Mercurial > repos > florianbegusch > qiime2_suite
diff qiime2-2020.8/qiime_feature-classifier_classify-hybrid-vsearch-sklearn.xml @ 20:d93d8888f0b0 draft
Uploaded
author | florianbegusch |
---|---|
date | Fri, 04 Sep 2020 12:44:24 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/qiime2-2020.8/qiime_feature-classifier_classify-hybrid-vsearch-sklearn.xml Fri Sep 04 12:44:24 2020 +0000 @@ -0,0 +1,214 @@ +<?xml version="1.0" ?> +<tool id="qiime_feature-classifier_classify-hybrid-vsearch-sklearn" name="qiime feature-classifier classify-hybrid-vsearch-sklearn" + version="2020.8"> + <description> ALPHA Hybrid classifier: VSEARCH exact match + sklearn classifier</description> + <requirements> + <requirement type="package" version="2020.8">qiime2</requirement> + </requirements> + <command><![CDATA[ +qiime feature-classifier classify-hybrid-vsearch-sklearn + +--i-query=$iquery + +--i-reference-reads=$ireferencereads + +--i-reference-taxonomy=$ireferencetaxonomy + +--i-classifier=$iclassifier + +#if str($pmaxaccepts) != 'None': +--p-maxaccepts=$pmaxaccepts +#end if + +--p-perc-identity=$ppercidentity + +--p-query-cov=$pquerycov + +#if str($pstrand) != 'None': +--p-strand=$pstrand +#end if + +--p-min-consensus=$pminconsensus + +#if str($pmaxhits) != 'None': +--p-maxhits=$pmaxhits +#end if + +#if str($pmaxrejects) != 'None': +--p-maxrejects=$pmaxrejects +#end if + +#if str($pconfidence) != 'None': +--p-confidence=$pconfidence +#end if + +#if str($preadorientation) != 'None': +--p-read-orientation=$preadorientation +#end if + +--p-threads=$pthreads + +#if $pnoprefilter: + --p-no-prefilter +#end if + +--p-sample-size=$psamplesize + +--p-randseed=$prandseed + +--o-classification=oclassification + +#if str($examples) != 'None': +--examples=$examples +#end if + +; +cp oclassification.qza $oclassification + + ]]></command> + <inputs> + <param format="qza,no_unzip.zip" label="--i-query: ARTIFACT FeatureData[Sequence] Sequences to classify taxonomically. [required]" name="iquery" optional="False" type="data" /> + <param format="qza,no_unzip.zip" label="--i-reference-reads: ARTIFACT FeatureData[Sequence] reference sequences. [required]" name="ireferencereads" optional="False" type="data" /> + <param format="qza,no_unzip.zip" label="--i-reference-taxonomy: ARTIFACT FeatureData[Taxonomy] reference taxonomy labels. [required]" name="ireferencetaxonomy" optional="False" type="data" /> + <param format="qza,no_unzip.zip" label="--i-classifier: ARTIFACT TaxonomicClassifier Pre-trained sklearn taxonomic classifier for classifying the reads. [required]" name="iclassifier" optional="False" type="data" /> + <param label="--p-maxaccepts: " name="pmaxaccepts" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="Int % Range(1">Int % Range(1</option> + <option value="None">None</option> + </param> + <param exclude_max="False" label="--p-perc-identity: PROPORTION Range(0.0, 1.0, inclusive_end=True) Percent sequence similarity to use for PREFILTER. Reject match if percent identity to query is lower. Set to a lower value to perform a rough pre-filter. This parameter is ignored if `prefilter` is disabled. [default: 0.5]" max="1.0" min="0.0" name="ppercidentity" optional="True" type="float" value="0.5" /> + <param exclude_max="False" label="--p-query-cov: PROPORTION Range(0.0, 1.0, inclusive_end=True) Query coverage threshold to use for PREFILTER. Reject match if query alignment coverage per high-scoring pair is lower. Set to a lower value to perform a rough pre-filter. This parameter is ignored if `prefilter` is disabled. [default: 0.8]" max="1.0" min="0.0" name="pquerycov" optional="True" type="float" value="0.8" /> + <param label="--p-strand: " name="pstrand" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="both">both</option> + <option value="plus">plus</option> + </param> + <param exclude_max="False" exclude_min="True" label="--p-min-consensus: NUMBER Range(0.5, 1.0, inclusive_start=False, inclusive_end=True) Minimum fraction of assignments must match top hit to be accepted as consensus assignment. [default: 0.51]" max="1.0" min="0.5" name="pminconsensus" optional="True" type="float" value="0.51" /> + <param label="--p-maxhits: " name="pmaxhits" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="Int % Range(1">Int % Range(1</option> + <option value="None">None</option> + </param> + <param label="--p-maxrejects: " name="pmaxrejects" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="Int % Range(1">Int % Range(1</option> + <option value="None">None</option> + </param> + <param label="--p-confidence: " name="pconfidence" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="Float % Range(0">Float % Range(0</option> + <option value="1">1</option> + <option value="inclusive_end=True">inclusive_end=True</option> + </param> + <param label="--p-read-orientation: " name="preadorientation" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="same">same</option> + <option value="reverse-complement">reverse-complement</option> + <option value="auto">auto</option> + </param> + <param label="--p-no-prefilter: Do not toggle positive filter of query sequences on or off. [default: True]" name="pnoprefilter" selected="False" type="boolean" /> + <param label="--p-sample-size: INTEGER Range(1, None) Randomly extract the given number of sequences from the reference database to use for prefiltering. This parameter is ignored if `prefilter` is disabled. [default: 1000]" min="1" name="psamplesize" optional="True" type="integer" value="1000" /> + <param label="--p-randseed: INTEGER Use integer as a seed for the pseudo-random generator Range(0, None) used during prefiltering. A given seed always produces the same output, which is useful for replicability. Set to 0 to use a pseudo-random seed. This parameter is ignored if `prefilter` is disabled. [default: 0]" min="0" name="prandseed" optional="True" type="integer" value="0" /> + <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> + + </inputs> + + <outputs> + <data format="qza" label="${tool.name} on ${on_string}: classification.qza" name="oclassification" /> + + </outputs> + + <help><![CDATA[ + ALPHA Hybrid classifier: VSEARCH exact match + sklearn classifier +############################################################### + +NOTE: THIS PIPELINE IS AN ALPHA RELEASE. Please report bugs to +https://forum.qiime2.org! Assign taxonomy to query sequences using hybrid +classifier. First performs rough positive filter to remove artifact and +low-coverage sequences (use "prefilter" parameter to toggle this step on or +off). Second, performs VSEARCH exact match between query and +reference_reads to find exact matches, followed by least common ancestor +consensus taxonomy assignment from among maxaccepts top hits, min_consensus +of which share that taxonomic assignment. Query sequences without an exact +match are then classified with a pre-trained sklearn taxonomy classifier to +predict the most likely taxonomic lineage. + +Parameters +---------- +query : FeatureData[Sequence] + Sequences to classify taxonomically. +reference_reads : FeatureData[Sequence] + reference sequences. +reference_taxonomy : FeatureData[Taxonomy] + reference taxonomy labels. +classifier : TaxonomicClassifier + Pre-trained sklearn taxonomic classifier for classifying the reads. +maxaccepts : Int % Range(1, None) | Str % Choices('all'), optional + Maximum number of hits to keep for each query. Set to "all" to keep all + hits > perc_identity similarity. Note that if strand=both, maxaccepts + will keep N hits for each direction (if searches in the opposite + direction yield results that exceed the minimum perc_identity). In + those cases use maxhits to control the total number of hits returned. + This option works in pair with maxrejects. The search process sorts + target sequences by decreasing number of k-mers they have in common + with the query sequence, using that information as a proxy for sequence + similarity. After pairwise alignments, if the first target sequence + passes the acceptation criteria, it is accepted as best hit and the + search process stops for that query. If maxaccepts is set to a higher + value, more hits are accepted. If maxaccepts and maxrejects are both + set to "all", the complete database is searched. +perc_identity : Float % Range(0.0, 1.0, inclusive_end=True), optional + Percent sequence similarity to use for PREFILTER. Reject match if + percent identity to query is lower. Set to a lower value to perform a + rough pre-filter. This parameter is ignored if `prefilter` is disabled. +query_cov : Float % Range(0.0, 1.0, inclusive_end=True), optional + Query coverage threshold to use for PREFILTER. Reject match if query + alignment coverage per high-scoring pair is lower. Set to a lower value + to perform a rough pre-filter. This parameter is ignored if `prefilter` + is disabled. +strand : Str % Choices('both', 'plus'), optional + Align against reference sequences in forward ("plus") or both + directions ("both"). +min_consensus : Float % Range(0.5, 1.0, inclusive_start=False, inclusive_end=True), optional + Minimum fraction of assignments must match top hit to be accepted as + consensus assignment. +maxhits : Int % Range(1, None) | Str % Choices('all'), optional +maxrejects : Int % Range(1, None) | Str % Choices('all'), optional +reads_per_batch : Int % Range(0, None), optional + Number of reads to process in each batch for sklearn classification. If + "auto", this parameter is autoscaled to min(number of query sequences / + threads, 20000). +confidence : Float % Range(0, 1, inclusive_end=True) | Str % Choices('disable'), optional + Confidence threshold for limiting taxonomic depth. Set to "disable" to + disable confidence calculation, or 0 to calculate confidence but not + apply it to limit the taxonomic depth of the assignments. +read_orientation : Str % Choices('same', 'reverse-complement', 'auto'), optional + Direction of reads with respect to reference sequences in pre-trained + sklearn classifier. same will cause reads to be classified unchanged; + reverse-complement will cause reads to be reversed and complemented + prior to classification. "auto" will autodetect orientation based on + the confidence estimates for the first 100 reads. +threads : Int % Range(1, None), optional + Number of threads to use for job parallelization. +prefilter : Bool, optional + Toggle positive filter of query sequences on or off. +sample_size : Int % Range(1, None), optional + Randomly extract the given number of sequences from the reference + database to use for prefiltering. This parameter is ignored if + `prefilter` is disabled. +randseed : Int % Range(0, None), optional + Use integer as a seed for the pseudo-random generator used during + prefiltering. A given seed always produces the same output, which is + useful for replicability. Set to 0 to use a pseudo-random seed. This + parameter is ignored if `prefilter` is disabled. + +Returns +------- +classification : FeatureData[Taxonomy] + The resulting taxonomy classifications. + ]]></help> + <macros> + <import>qiime_citation.xml</import> + </macros> + <expand macro="qiime_citation"/> +</tool> \ No newline at end of file