Mercurial > repos > florianbegusch > qiime2_suite
view qiime2/qiime_longitudinal_maturity-index.xml @ 10:21c7954105a9 draft
Fix
author | florianbegusch |
---|---|
date | Sun, 25 Aug 2019 10:26:27 -0400 |
parents | f190567fe3f6 |
children | a0a8d77a991c |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_longitudinal_maturity-index" name="qiime longitudinal maturity-index" version="2019.7"> <description> - Microbial maturity index prediction.</description> <requirements> <requirement type="package" version="2019.7">qiime2</requirement> </requirements> <command><![CDATA[ qiime longitudinal maturity-index --i-table=$itable --p-state-column="$pstatecolumn" --p-group-by="$pgroupby" --p-control="$pcontrol" #if str($pindividualidcolumn): --p-individual-id-column="$pindividualidcolumn" #end if #if str($pestimator) != 'None': --p-estimator=$pestimator #end if #if str($pnestimators): --p-n-estimators=$pnestimators #end if #if str($ptestsize): --p-test-size=$ptestsize #end if #if str($pstep): --p-step=$pstep #end if #if str($pcv): --p-cv=$pcv #end if #if str($prandomstate): --p-random-state="$prandomstate" #end if #set $pnjobs = '${GALAXY_SLOTS:-4}' #if str($pnjobs): --p-n-jobs="$pnjobs" #end if #if $pparametertuning: --p-parameter-tuning #end if #if $poptimizefeatureselection: --p-optimize-feature-selection #end if #if $pstratify: --p-stratify #end if #if str($pmissingsamples) != 'None': --p-missing-samples=$pmissingsamples #end if #if str($pfeaturecount): --p-feature-count=$pfeaturecount #end if #if $input_files_mmetadatafile: #def list_dict_to_string(list_dict): #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') #for d in list_dict[1:]: #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') #end for #return $file_list #end def --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) #end if --o-sample-estimator=osampleestimator --o-feature-importance=ofeatureimportance --o-predictions=opredictions --o-model-summary=omodelsummary --o-accuracy-results=oaccuracyresults --o-maz-scores=omazscores --o-clustermap=oclustermap --o-volatility-plots=ovolatilityplots ; cp osampleestimator.qza $osampleestimator; cp ofeatureimportance.qza $ofeatureimportance; cp opredictions.qza $opredictions; qiime tools export --input-path omodelsummary.qzv --output-path out && mkdir -p '$omodelsummary.files_path' && cp -r out/* '$omodelsummary.files_path' && mv '$omodelsummary.files_path/index.html' '$omodelsummary'; qiime tools export --input-path oaccuracyresults.qzv --output-path out && mkdir -p '$oaccuracyresults.files_path' && cp -r out/* '$oaccuracyresults.files_path' && mv '$oaccuracyresults.files_path/index.html' '$oaccuracyresults'; cp omazscores.qza $omazscores; qiime tools export --input-path oclustermap.qzv --output-path out && mkdir -p '$oclustermap.files_path' && cp -r out/* '$oclustermap.files_path' && mv '$oclustermap.files_path/index.html' '$oclustermap'; qiime tools export --input-path ovolatilityplots.qzv --output-path out && mkdir -p '$ovolatilityplots.files_path' && cp -r out/* '$ovolatilityplots.files_path' && mv '$ovolatilityplots.files_path/index.html' '$ovolatilityplots' ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> <param label="--p-state-column: TEXT Numeric metadata column containing sampling time (state) data to use as prediction target. [required]" name="pstatecolumn" optional="False" type="text"/> <param label="--p-group-by: TEXT Categorical metadata column to use for plotting and significance testing between main treatment groups. [required]" name="pgroupby" optional="False" type="text"/> <param label="--p-control: TEXT Value of group-by to use as control group. The regression model will be trained using only control group data, and the maturity scores of other groups consequently will be assessed relative to this group. [required]" name="pcontrol" optional="False" type="text"/> <param label="--p-individual-id-column: TEXT Optional metadata column containing IDs for individual subjects. Adds individual subject (spaghetti) vectors to volatility charts if a column name is provided. [optional]" name="pindividualidcolumn" optional="True" type="text"/> <param label="--p-estimator: " name="pestimator" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="RandomForestRegressor">RandomForestRegressor</option> <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> <option value="AdaBoostRegressor">AdaBoostRegressor</option> <option value="ElasticNet">ElasticNet</option> <option value="Ridge">Ridge</option> <option value="Lasso">Lasso</option> <option value="KNeighborsRegressor">KNeighborsRegressor</option> <option value="LinearSVR">LinearSVR</option> <option value="SVR">SVR</option> </param> <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" min="1" value="100"/> <param label="--p-test-size: PROPORTION Range(0.0, 1.0, inclusive_start=False) Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.5]" name="ptestsize" optional="True" type="float" exclusive_start="True" min="0" max="1" value="0.5"/> <param label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" exclusive_start="True" min="0" max="1" value="0.05"/> <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" name="pcv" optional="True" type="integer" min="1" value="5"/> <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="integer"/> <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean"/> <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean"/> <param label="--p-stratify: --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" selected="False" type="boolean"/> <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="error">error</option> <option value="ignore">ignore</option> </param> <param label="--p-feature-count: INTEGER Range(0, None) Filter feature table to include top N most important features. Set to zero to include all features. [default: 50]" name="pfeaturecount" optional="True" type="integer" min="0" value="50"/> <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file [required]"> <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> </repeat> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator"/> <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/> <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions"/> <data format="html" label="${tool.name} on ${on_string}: modelsummary.qzv" name="omodelsummary"/> <data format="html" label="${tool.name} on ${on_string}: accuracyresults.qzv" name="oaccuracyresults"/> <data format="qza" label="${tool.name} on ${on_string}: mazscores.qza" name="omazscores"/> <data format="html" label="${tool.name} on ${on_string}: clustermap.qzv" name="oclustermap"/> <data format="html" label="${tool.name} on ${on_string}: volatilityplots.qzv" name="ovolatilityplots"/> </outputs> <help><![CDATA[ Microbial maturity index prediction. #################################### Calculates a "microbial maturity" index from a regression model trained on feature data to predict a given continuous metadata column, e.g., to predict age as a function of microbiota composition. The model is trained on a subset of control group samples, then predicts the column value for all samples. This visualization computes maturity index z-scores to compare relative "maturity" between each group, as described in doi:10.1038/nature13421. This method can be used to predict between-group differences in relative trajectory across any type of continuous metadata gradient, e.g., intestinal microbiome development by age, microbial succession during wine fermentation, or microbial community differences along environmental gradients, as a function of two or more different "treatment" groups. Parameters ---------- table : FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. metadata : Metadata \ state_column : Str Numeric metadata column containing sampling time (state) data to use as prediction target. group_by : Str Categorical metadata column to use for plotting and significance testing between main treatment groups. control : Str Value of group_by to use as control group. The regression model will be trained using only control group data, and the maturity scores of other groups consequently will be assessed relative to this group. individual_id_column : Str, optional Optional metadata column containing IDs for individual subjects. Adds individual subject (spaghetti) vectors to volatility charts if a column name is provided. estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional Regression model to use for prediction. n_estimators : Int % Range(1, None), optional Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional Fraction of input samples to exclude from training set and use for classifier testing. step : Float % Range(0.0, 1.0, inclusive_start=False), optional If optimize_feature_selection is True, step is the percentage of features to remove at each iteration. cv : Int % Range(1, None), optional Number of k-fold cross-validations to perform. random_state : Int, optional Seed used by random number generator. parameter_tuning : Bool, optional Automatically tune hyperparameters using random grid search. optimize_feature_selection : Bool, optional Automatically optimize input feature selection using recursive feature elimination. stratify : Bool, optional Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. missing_samples : Str % Choices('error', 'ignore'), optional How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. feature_count : Int % Range(0, None), optional Filter feature table to include top N most important features. Set to zero to include all features. Returns ------- sample_estimator : SampleEstimator[Regressor] Trained sample estimator. feature_importance : FeatureData[Importance] Importance of each input feature to model accuracy. predictions : SampleData[RegressorPredictions] Predicted target values for each input sample. model_summary : Visualization Summarized parameter and (if enabled) feature selection information for the trained estimator. accuracy_results : Visualization Accuracy results visualization. maz_scores : SampleData[RegressorPredictions] Microbiota-for-age z-score predictions. clustermap : Visualization Heatmap of important feature abundance at each time point in each group. volatility_plots : Visualization Interactive volatility plots of MAZ and maturity scores, target (column) predictions, and the sample metadata. ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>