Mercurial > repos > florianbegusch > qiime2_suite
view qiime2/qiime_sample-classifier_classify-samples-ncv.xml @ 15:276ec629f09a draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 03 Sep 2020 09:56:05 +0000 |
parents | a0a8d77a991c |
children |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_sample-classifier_classify-samples-ncv" name="qiime sample-classifier classify-samples-ncv" version="2020.8"> <description>Nested cross-validated supervised learning classifier.</description> <requirements> <requirement type="package" version="2020.8">qiime2</requirement> </requirements> <command><![CDATA[ qiime sample-classifier classify-samples-ncv --i-table=$itable # if $input_files_mmetadatafile: # def list_dict_to_string(list_dict): # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') # for d in list_dict[1:]: # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') # end for # return $file_list # end def --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) # end if #if '__ob__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__ob__', '[') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if '__cb__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__cb__', ']') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if 'X' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('X', '\\') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if '__sq__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__sq__', "'") #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if '__db__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__db__', '"') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if --m-metadata-column=$mmetadatacolumn --p-cv=$pcv #if str($prandomstate): --p-random-state=$prandomstate #end if --p-n-jobs=$pnjobs --p-n-estimators=$pnestimators #if str($pestimator) != 'None': --p-estimator=$pestimator #end if #if $pparametertuning: --p-parameter-tuning #end if #if str($pmissingsamples) != 'None': --p-missing-samples=$pmissingsamples #end if --o-predictions=opredictions --o-feature-importance=ofeatureimportance --o-probabilities=oprobabilities #if str($examples) != 'None': --examples=$examples #end if ; cp oprobabilities.qza $oprobabilities ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA" name="additional_input" optional="True" type="data" /> </repeat> <param label="--m-metadata-column: COLUMN MetadataColumn[Categorical] Categorical metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text" /> <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> <param label="--p-estimator: " name="pestimator" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="RandomForestClassifier">RandomForestClassifier</option> <option value="ExtraTreesClassifier">ExtraTreesClassifier</option> <option value="GradientBoostingClassifier">GradientBoostingClassifier</option> <option value="AdaBoostClassifier">AdaBoostClassifier</option> <option value="KNeighborsClassifier">KNeighborsClassifier</option> <option value="LinearSVC">LinearSVC</option> <option value="SVC">SVC</option> </param> <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="error">error</option> <option value="ignore">ignore</option> </param> <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" /> <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> <data format="qza" label="${tool.name} on ${on_string}: probabilities.qza" name="oprobabilities" /> </outputs> <help><![CDATA[ Nested cross-validated supervised learning classifier. ############################################################### Predicts a categorical sample metadata column using a supervised learning classifier. Uses nested stratified k-fold cross validation for automated hyperparameter optimization and sample prediction. Outputs predicted values for each input sample, and relative importance of each feature for model accuracy. Parameters ---------- table : FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. metadata : MetadataColumn[Categorical] Categorical metadata column to use as prediction target. cv : Int % Range(1, None), optional Number of k-fold cross-validations to perform. random_state : Int, optional Seed used by random number generator. n_jobs : Int, optional Number of jobs to run in parallel. n_estimators : Int % Range(1, None), optional Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional Estimator method to use for sample prediction. parameter_tuning : Bool, optional Automatically tune hyperparameters using random grid search. missing_samples : Str % Choices('error', 'ignore'), optional How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. Returns ------- predictions : SampleData[ClassifierPredictions] Predicted target values for each input sample. feature_importance : FeatureData[Importance] Importance of each input feature to model accuracy. probabilities : SampleData[Probabilities] Predicted class probabilities for each input sample. ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>