Mercurial > repos > florianbegusch > qiime2_suite
view qiime2/qiime_feature-classifier_classify-sklearn.xml @ 12:33e7a3470046 draft
Deleted selected files
author | florianbegusch |
---|---|
date | Thu, 03 Sep 2020 09:44:28 +0000 |
parents | f190567fe3f6 |
children | a0a8d77a991c |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_feature-classifier_classify-sklearn" name="qiime feature-classifier classify-sklearn" version="2019.7"> <description> - Pre-fitted sklearn-based taxonomy classifier</description> <requirements> <requirement type="package" version="2019.7">qiime2</requirement> </requirements> <command><![CDATA[ qiime feature-classifier classify-sklearn #if str( $id_to_classifier_fp.selector ) == 'history' #set $classifier = $id_to_classifier_fp.classifier_fp --i-classifier '$classifier' #else: #set $classifier = $id_to_classifier_fp.classifier_fp.fields.path --i-classifier '$classifier' #end if --i-reads=$ireads #set $pnjobs = '${GALAXY_SLOTS:-4}' #if str($pnjobs): --p-n-jobs="$pnjobs" #end if #if str($pconfidence) != '': #if float($pconfidence) >= 0.0: --p-confidence=$pconfidence #end if #end if #if str($preadorientation) != 'None': --p-read-orientation=$preadorientation #end if --o-classification=oclassification ; cp oclassification.qza $oclassification ]]></command> <inputs> <conditional name="id_to_classifier_fp" optional="True"> <param name="selector" type="select" label="Reference classifier to query"> <option value="cached">Public classifiers</option> <option value="history">Classifiers from your history</option> </param> <when value="cached"> <param name="classifier_fp" label="Reference classifier" type="select" optional="True"> <options from_data_table="qiime_rep_set" /> </param> </when> <when value="history"> <param name="classifier_fp" type="data" format="qza,no_unzip.zip" label="Reference classifier" optional="True" /> </when> </conditional> <param format="qza,no_unzip.zip" label="--i-reads: ARTIFACT FeatureData[Sequence] The feature data to be classified. [required]" name="ireads" optional="False" type="data"/> <param label="--p-confidence: NUMBER Confidence threshold for limiting taxonomic depth. Provide -1 to disable confidence calculation, or 0 to calculate confidence but not apply it to limit the taxonomic depth of the assignments. [default: 0.7]" name="pconfidence" optional="True" type="float" value="0.7"/> <param label="--p-read-orientation: " name="preadorientation" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="same">same</option> <option value="reverse-complement">reverse-complement</option> </param> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: classification.qza" name="oclassification"/> </outputs> <help><![CDATA[ Pre-fitted sklearn-based taxonomy classifier ############################################ Classify reads by taxon using a fitted classifier. Parameters ---------- reads : FeatureData[Sequence] The feature data to be classified. classifier : TaxonomicClassifier The taxonomic classifier for classifying the reads. reads_per_batch : Int % Range(0, None), optional Number of reads to process in each batch. If 0, this parameter is autoscaled to min( number of query sequences / n_jobs, 20000). pre_dispatch : Str, optional "all" or expression, as in "3*n_jobs". The number of batches (of tasks) to be pre-dispatched. confidence : Float, optional Confidence threshold for limiting taxonomic depth. Provide -1 to disable confidence calculation, or 0 to calculate confidence but not apply it to limit the taxonomic depth of the assignments. read_orientation : Str % Choices('same', 'reverse-complement'), optional Direction of reads with respect to reference sequences. same will cause reads to be classified unchanged; reverse-complement will cause reads to be reversed and complemented prior to classification. Default is to autodetect based on the confidence estimates for the first 100 reads. Returns ------- classification : FeatureData[Taxonomy] ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>