Mercurial > repos > florianbegusch > qiime2_suite
view qiime2/qiime_feature-classifier_classify-sklearn.xml @ 0:370e0b6e9826 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 17 Jul 2019 03:05:17 -0400 |
parents | |
children | de4c22a52df4 |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_feature-classifier_classify-sklearn" name="qiime feature-classifier classify-sklearn" version="2019.4"> <description> - Pre-fitted sklearn-based taxonomy classifier</description> <requirements> <requirement type="package" version="2019.4">qiime2</requirement> </requirements> <command><![CDATA[ qiime feature-classifier classify-sklearn --i-reads=$ireads --i-classifier=$iclassifier #set $pnjobs = '${GALAXY_SLOTS:-4}' #if str($pnjobs): --p-n-jobs="$pnjobs" #end if #if $pconfidence: --p-confidence=$pconfidence #end if #if str($preadorientation) != 'None': --p-read-orientation=$preadorientation #end if --o-classification=oclassification ; cp oclassification.qza $oclassification ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-reads: ARTIFACT FeatureData[Sequence] The feature data to be classified. [required]" name="ireads" optional="False" type="data"/> <param format="qza,no_unzip.zip" label="--i-classifier: ARTIFACT TaxonomicClassifier The taxonomic classifier for classifying the reads. [required]" name="iclassifier" optional="False" type="data"/> <param label="--p-confidence: NUMBER Confidence threshold for limiting taxonomic depth. Provide -1 to disable confidence calculation, or 0 to calculate confidence but not apply it to limit the taxonomic depth of the assignments. [default: 0.7]" name="pconfidence" optional="True" type="float" value="0.7"/> <param label="--p-read-orientation: " name="preadorientation" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="same">same</option> <option value="reverse-complement">reverse-complement</option> </param> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: classification.qza" name="oclassification"/> </outputs> <help><![CDATA[ Pre-fitted sklearn-based taxonomy classifier ############################################ Classify reads by taxon using a fitted classifier. Parameters ---------- reads : FeatureData[Sequence] The feature data to be classified. classifier : TaxonomicClassifier The taxonomic classifier for classifying the reads. reads_per_batch : Int % Range(0, None), optional Number of reads to process in each batch. If 0, this parameter is autoscaled to min( number of query sequences / n_jobs, 20000). pre_dispatch : Str, optional "all" or expression, as in "3*n_jobs". The number of batches (of tasks) to be pre-dispatched. confidence : Float, optional Confidence threshold for limiting taxonomic depth. Provide -1 to disable confidence calculation, or 0 to calculate confidence but not apply it to limit the taxonomic depth of the assignments. read_orientation : Str % Choices('same', 'reverse-complement'), optional Direction of reads with respect to reference sequences. same will cause reads to be classified unchanged; reverse-complement will cause reads to be reversed and complemented prior to classification. Default is to autodetect based on the confidence estimates for the first 100 reads. Returns ------- classification : FeatureData[Taxonomy] ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>