Mercurial > repos > florianbegusch > qiime2_suite
view qiime2/qiime_sample-classifier_classify-samples.xml @ 0:370e0b6e9826 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 17 Jul 2019 03:05:17 -0400 |
parents | |
children | a025a4a89e07 |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_sample-classifier_classify-samples" name="qiime sample-classifier classify-samples" version="2019.4"> <description> - Train and test a cross-validated supervised learning classifier.</description> <requirements> <requirement type="package" version="2019.4">qiime2</requirement> </requirements> <command><![CDATA[ qiime sample-classifier classify-samples --i-table=$itable --m-metadata-column="$mmetadatacolumn" #if $ptestsize: --p-test-size=$ptestsize #end if #if $pstep: --p-step=$pstep #end if #if $pcv: --p-cv=$pcv #end if #if str($prandomstate): --p-random-state="$prandomstate" #end if #set $pnjobs = '${GALAXY_SLOTS:-4}' #if str($pnjobs): --p-n-jobs="$pnjobs" #end if #if $pnestimators: --p-n-estimators=$pnestimators #end if #if str($pestimator) != 'None': --p-estimator=$pestimator #end if #if $poptimizefeatureselection: --p-optimize-feature-selection #end if #if $pparametertuning: --p-parameter-tuning #end if #if str($ppalette) != 'None': --p-palette=$ppalette #end if #if str($pmissingsamples) != 'None': --p-missing-samples=$pmissingsamples #end if #if $input_files_mmetadatafile: #def list_dict_to_string(list_dict): #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') #for d in list_dict[1:]: #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') #end for #return $file_list #end def --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) #end if --o-sample-estimator=osampleestimator --o-feature-importance=ofeatureimportance --o-predictions=opredictions --o-model-summary=omodelsummary --o-accuracy-results=oaccuracyresults ; cp osampleestimator.qza $osampleestimator; cp ofeatureimportance.qza $ofeatureimportance; cp opredictions.qza $opredictions; qiime tools export --input-path omodelsummary.qzv --output-path out && mkdir -p '$omodelsummary.files_path' && cp -r out/* '$omodelsummary.files_path' && mv '$omodelsummary.files_path/index.html' '$omodelsummary'; qiime tools export --input-path oaccuracyresults.qzv --output-path out && mkdir -p '$oaccuracyresults.files_path' && cp -r out/* '$oaccuracyresults.files_path' && mv '$oaccuracyresults.files_path/index.html' '$oaccuracyresults' ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> <param label="--m-metadata-column: COLUMN MetadataColumn[Categorical] Categorical metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> <param label="--p-test-size: PROPORTION Range(0.0, 1.0, inclusive_start=False) Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.2]" name="ptestsize" optional="True" type="float" value="0.2" min="0" max="1" exclusive_start="True"/> <param label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" value="0.05" min="0" max="1" exclusive_start="True"/> <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" name="pcv" optional="True" type="integer" value="5" min="1"/> <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="integer"/> <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100" min="1"/> <param label="--p-estimator: " name="pestimator" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="RandomForestClassifier">RandomForestClassifier</option> <option value="ExtraTreesClassifier">ExtraTreesClassifier</option> <option value="GradientBoostingClassifier">GradientBoostingClassifier</option> <option value="AdaBoostClassifier">AdaBoostClassifier</option> <option value="KNeighborsClassifier">KNeighborsClassifier</option> <option value="LinearSVC">LinearSVC</option> <option value="SVC">SVC</option> </param> <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean"/> <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean"/> <param label="--p-palette: " name="ppalette" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="YellowOrangeBrown">YellowOrangeBrown</option> <option value="YellowOrangeRed">YellowOrangeRed</option> <option value="OrangeRed">OrangeRed</option> <option value="PurpleRed">PurpleRed</option> <option value="RedPurple">RedPurple</option> <option value="BluePurple">BluePurple</option> <option value="GreenBlue">GreenBlue</option> <option value="PurpleBlue">PurpleBlue</option> <option value="YellowGreen">YellowGreen</option> <option value="summer">summer</option> <option value="copper">copper</option> <option value="viridis">viridis</option> <option value="plasma">plasma</option> <option value="inferno">inferno</option> <option value="magma">magma</option> <option value="sirocco">sirocco</option> <option value="drifting">drifting</option> <option value="melancholy">melancholy</option> <option value="enigma">enigma</option> <option value="eros">eros</option> <option value="spectre">spectre</option> <option value="ambition">ambition</option> <option value="mysteriousstains">mysteriousstains</option> <option value="daydream">daydream</option> <option value="solano">solano</option> <option value="navarro">navarro</option> <option value="dandelions">dandelions</option> <option value="deepblue">deepblue</option> <option value="verve">verve</option> <option value="greyscale">greyscale</option> </param> <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="error">error</option> <option value="ignore">ignore</option> </param> <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> </repeat> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator"/> <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/> <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions"/> <data format="html" label="${tool.name} on ${on_string}: modelsummary.qzv" name="omodelsummary"/> <data format="html" label="${tool.name} on ${on_string}: accuracyresults.qzv" name="oaccuracyresults"/> </outputs> <help><![CDATA[ Train and test a cross-validated supervised learning classifier. ################################################################ Predicts a categorical sample metadata column using a supervised learning classifier. Splits input data into training and test sets. The training set is used to train and test the estimator using a stratified k-fold cross- validation scheme. This includes optional steps for automated feature extraction and hyperparameter optimization. The test set validates classification accuracy of the optimized estimator. Outputs classification results for test set. For more details on the learning algorithm, see http://scikit-learn.org/stable/supervised_learning.html Parameters ---------- table : FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. metadata : MetadataColumn[Categorical] Categorical metadata column to use as prediction target. test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional Fraction of input samples to exclude from training set and use for classifier testing. step : Float % Range(0.0, 1.0, inclusive_start=False), optional If optimize_feature_selection is True, step is the percentage of features to remove at each iteration. cv : Int % Range(1, None), optional Number of k-fold cross-validations to perform. random_state : Int, optional Seed used by random number generator. n_estimators : Int % Range(1, None), optional Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional Estimator method to use for sample prediction. optimize_feature_selection : Bool, optional Automatically optimize input feature selection using recursive feature elimination. parameter_tuning : Bool, optional Automatically tune hyperparameters using random grid search. palette : Str % Choices('YellowOrangeBrown', 'YellowOrangeRed', 'OrangeRed', 'PurpleRed', 'RedPurple', 'BluePurple', 'GreenBlue', 'PurpleBlue', 'YellowGreen', 'summer', 'copper', 'viridis', 'plasma', 'inferno', 'magma', 'sirocco', 'drifting', 'melancholy', 'enigma', 'eros', 'spectre', 'ambition', 'mysteriousstains', 'daydream', 'solano', 'navarro', 'dandelions', 'deepblue', 'verve', 'greyscale'), optional The color palette to use for plotting. missing_samples : Str % Choices('error', 'ignore'), optional How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. Returns ------- sample_estimator : SampleEstimator[Classifier] Trained sample estimator. feature_importance : FeatureData[Importance] Importance of each input feature to model accuracy. predictions : SampleData[ClassifierPredictions] Predicted target values for each input sample. model_summary : Visualization Summarized parameter and (if enabled) feature selection information for the trained estimator. accuracy_results : Visualization Accuracy results visualization. ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>