Mercurial > repos > florianbegusch > qiime2_suite
view qiime2-2020.8/qiime_feature-classifier_classify-sklearn.xml @ 25:499916460746 draft
Deleted selected files
author | florianbegusch |
---|---|
date | Fri, 04 Sep 2020 12:56:26 +0000 |
parents | d93d8888f0b0 |
children |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_feature-classifier_classify-sklearn" name="qiime feature-classifier classify-sklearn" version="2020.8"> <description>Pre-fitted sklearn-based taxonomy classifier</description> <requirements> <requirement type="package" version="2020.8">qiime2</requirement> </requirements> <command><![CDATA[ qiime feature-classifier classify-sklearn --i-reads=$ireads --i-classifier=$iclassifier --p-n-jobs=$pnjobs #if str($pconfidence) != 'None': --p-confidence=$pconfidence #end if #if str($preadorientation) != 'None': --p-read-orientation=$preadorientation #end if --o-classification=oclassification #if str($examples) != 'None': --examples=$examples #end if ; cp oclassification.qza $oclassification ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-reads: ARTIFACT FeatureData[Sequence] The feature data to be classified. [required]" name="ireads" optional="False" type="data" /> <param format="qza,no_unzip.zip" label="--i-classifier: ARTIFACT TaxonomicClassifier The taxonomic classifier for classifying the reads. [required]" name="iclassifier" optional="False" type="data" /> <param label="--p-confidence: " name="pconfidence" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="Float % Range(0">Float % Range(0</option> <option value="1">1</option> <option value="inclusive_end=True">inclusive_end=True</option> </param> <param label="--p-read-orientation: " name="preadorientation" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="same">same</option> <option value="reverse-complement">reverse-complement</option> <option value="auto">auto</option> </param> <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: classification.qza" name="oclassification" /> </outputs> <help><![CDATA[ Pre-fitted sklearn-based taxonomy classifier ############################################################### Classify reads by taxon using a fitted classifier. Parameters ---------- reads : FeatureData[Sequence] The feature data to be classified. classifier : TaxonomicClassifier The taxonomic classifier for classifying the reads. reads_per_batch : Int % Range(0, None), optional Number of reads to process in each batch. If "auto", this parameter is autoscaled to min( number of query sequences / n_jobs, 20000). n_jobs : Int, optional The maximum number of concurrently worker processes. If -1 all CPUs are used. If 1 is given, no parallel computing code is used at all, which is useful for debugging. For n_jobs below -1, (n_cpus + 1 + n_jobs) are used. Thus for n_jobs = -2, all CPUs but one are used. pre_dispatch : Str, optional "all" or expression, as in "3*n_jobs". The number of batches (of tasks) to be pre-dispatched. confidence : Float % Range(0, 1, inclusive_end=True) | Str % Choices('disable'), optional Confidence threshold for limiting taxonomic depth. Set to "disable" to disable confidence calculation, or 0 to calculate confidence but not apply it to limit the taxonomic depth of the assignments. read_orientation : Str % Choices('same', 'reverse-complement', 'auto'), optional Direction of reads with respect to reference sequences. same will cause reads to be classified unchanged; reverse-complement will cause reads to be reversed and complemented prior to classification. "auto" will autodetect orientation based on the confidence estimates for the first 100 reads. Returns ------- classification : FeatureData[Taxonomy] ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>