Mercurial > repos > florianbegusch > qiime2_suite
view qiime2/qiime_sample-classifier_regress-samples.xml @ 16:5021f9d76de4 draft
Deleted selected files
author | florianbegusch |
---|---|
date | Thu, 03 Sep 2020 10:51:34 +0000 |
parents | a0a8d77a991c |
children |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_sample-classifier_regress-samples" name="qiime sample-classifier regress-samples" version="2020.8"> <description>Train and test a cross-validated supervised learning regressor.</description> <requirements> <requirement type="package" version="2020.8">qiime2</requirement> </requirements> <command><![CDATA[ qiime sample-classifier regress-samples --i-table=$itable # if $input_files_mmetadatafile: # def list_dict_to_string(list_dict): # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') # for d in list_dict[1:]: # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') # end for # return $file_list # end def --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) # end if #if '__ob__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__ob__', '[') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if '__cb__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__cb__', ']') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if 'X' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('X', '\\') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if '__sq__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__sq__', "'") #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if '__db__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__db__', '"') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if --m-metadata-column=$mmetadatacolumn --p-test-size=$ptestsize --p-step=$pstep --p-cv=$pcv #if str($prandomstate): --p-random-state=$prandomstate #end if --p-n-jobs=$pnjobs --p-n-estimators=$pnestimators #if str($pestimator) != 'None': --p-estimator=$pestimator #end if #if $poptimizefeatureselection: --p-optimize-feature-selection #end if #if $pstratify: --p-stratify #end if #if $pparametertuning: --p-parameter-tuning #end if #if str($pmissingsamples) != 'None': --p-missing-samples=$pmissingsamples #end if --o-sample-estimator=osampleestimator --o-feature-importance=ofeatureimportance --o-predictions=opredictions --o-model-summary=omodelsummary --o-accuracy-results=oaccuracyresults #if str($examples) != 'None': --examples=$examples #end if ; cp opredictions.qza $opredictions ; qiime tools export omodelsummary.qzv --output-path out && mkdir -p '$omodelsummary.files_path' && cp -r out/* '$omodelsummary.files_path' && mv '$omodelsummary.files_path/index.html' '$omodelsummary' ; qiime tools export oaccuracyresults.qzv --output-path out && mkdir -p '$oaccuracyresults.files_path' && cp -r out/* '$oaccuracyresults.files_path' && mv '$oaccuracyresults.files_path/index.html' '$oaccuracyresults' ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA" name="additional_input" optional="True" type="data" /> </repeat> <param label="--m-metadata-column: COLUMN MetadataColumn[Numeric] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text" /> <param exclude_min="True" label="--p-test-size: PROPORTION Range(0.0, 1.0, inclusive_start=False) Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.2]" max="1.0" min="0.0" name="ptestsize" optional="True" type="float" value="0.2" /> <param exclude_min="True" label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" max="1.0" min="0.0" name="pstep" optional="True" type="float" value="0.05" /> <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> <param label="--p-estimator: " name="pestimator" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="RandomForestRegressor">RandomForestRegressor</option> <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> <option value="AdaBoostRegressor">AdaBoostRegressor</option> <option value="ElasticNet">ElasticNet</option> <option value="Ridge">Ridge</option> <option value="Lasso">Lasso</option> <option value="KNeighborsRegressor">KNeighborsRegressor</option> <option value="LinearSVR">LinearSVR</option> <option value="SVR">SVR</option> </param> <param label="--p-optimize-feature-selection: --p-optimize-feature-selection: / --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean" /> <param label="--p-stratify: --p-stratify: / --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" selected="False" type="boolean" /> <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="error">error</option> <option value="ignore">ignore</option> </param> <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator" /> <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" /> <data format="html" label="${tool.name} on ${on_string}: modelsummary.html" name="omodelsummary" /> <data format="html" label="${tool.name} on ${on_string}: accuracyresults.html" name="oaccuracyresults" /> </outputs> <help><![CDATA[ Train and test a cross-validated supervised learning regressor. ############################################################### Predicts a continuous sample metadata column using a supervised learning regressor. Splits input data into training and test sets. The training set is used to train and test the estimator using a stratified k-fold cross- validation scheme. This includes optional steps for automated feature extraction and hyperparameter optimization. The test set validates classification accuracy of the optimized estimator. Outputs classification results for test set. For more details on the learning algorithm, see http://scikit-learn.org/stable/supervised_learning.html Parameters ---------- table : FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. metadata : MetadataColumn[Numeric] Numeric metadata column to use as prediction target. test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional Fraction of input samples to exclude from training set and use for classifier testing. step : Float % Range(0.0, 1.0, inclusive_start=False), optional If optimize_feature_selection is True, step is the percentage of features to remove at each iteration. cv : Int % Range(1, None), optional Number of k-fold cross-validations to perform. random_state : Int, optional Seed used by random number generator. n_jobs : Int, optional Number of jobs to run in parallel. n_estimators : Int % Range(1, None), optional Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional Estimator method to use for sample prediction. optimize_feature_selection : Bool, optional Automatically optimize input feature selection using recursive feature elimination. stratify : Bool, optional Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. parameter_tuning : Bool, optional Automatically tune hyperparameters using random grid search. missing_samples : Str % Choices('error', 'ignore'), optional How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. Returns ------- sample_estimator : SampleEstimator[Regressor] Trained sample estimator. feature_importance : FeatureData[Importance] Importance of each input feature to model accuracy. predictions : SampleData[RegressorPredictions] Predicted target values for each input sample. model_summary : Visualization Summarized parameter and (if enabled) feature selection information for the trained estimator. accuracy_results : Visualization Accuracy results visualization. ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>