view qiime2/qiime_feature-classifier_classify-sklearn.xml @ 2:51025741f326 draft

Uploaded
author florianbegusch
date Thu, 18 Jul 2019 12:19:15 -0400
parents 370e0b6e9826
children de4c22a52df4
line wrap: on
line source

<?xml version="1.0" ?>
<tool id="qiime_feature-classifier_classify-sklearn" name="qiime feature-classifier classify-sklearn" version="2019.4">
	<description> - Pre-fitted sklearn-based taxonomy classifier</description>
	<requirements>
		<requirement type="package" version="2019.4">qiime2</requirement>
	</requirements>
	<command><![CDATA[
qiime feature-classifier classify-sklearn

--i-reads=$ireads
--i-classifier=$iclassifier

#set $pnjobs = '${GALAXY_SLOTS:-4}'

#if str($pnjobs):
 --p-n-jobs="$pnjobs"
#end if


#if $pconfidence:
 --p-confidence=$pconfidence
#end if

#if str($preadorientation) != 'None':
 --p-read-orientation=$preadorientation
#end if

--o-classification=oclassification
;
cp oclassification.qza $oclassification
	]]></command>
	<inputs>
		<param format="qza,no_unzip.zip" label="--i-reads: ARTIFACT FeatureData[Sequence] The feature data to be classified.         [required]" name="ireads" optional="False" type="data"/>
		<param format="qza,no_unzip.zip" label="--i-classifier: ARTIFACT TaxonomicClassifier  The taxonomic classifier for classifying the reads. [required]" name="iclassifier" optional="False" type="data"/>
		<param label="--p-confidence: NUMBER  Confidence threshold for limiting taxonomic depth. Provide -1 to disable confidence calculation, or 0 to calculate confidence but not apply it to limit the taxonomic depth of the assignments.    [default: 0.7]" name="pconfidence" optional="True" type="float" value="0.7"/>
		<param label="--p-read-orientation: " name="preadorientation" optional="True" type="select">
			<option selected="True" value="None">Selection is Optional</option>
			<option value="same">same</option>
			<option value="reverse-complement">reverse-complement</option>
		</param>
	</inputs>
	<outputs>
		<data format="qza" label="${tool.name} on ${on_string}: classification.qza" name="oclassification"/>
	</outputs>
	<help><![CDATA[
Pre-fitted sklearn-based taxonomy classifier
############################################

Classify reads by taxon using a fitted classifier.

Parameters
----------
reads : FeatureData[Sequence]
    The feature data to be classified.
classifier : TaxonomicClassifier
    The taxonomic classifier for classifying the reads.
reads_per_batch : Int % Range(0, None), optional
    Number of reads to process in each batch. If 0, this parameter is
    autoscaled to min( number of query sequences / n_jobs, 20000).
pre_dispatch : Str, optional
    "all" or expression, as in "3*n_jobs". The number of batches (of tasks)
    to be pre-dispatched.
confidence : Float, optional
    Confidence threshold for limiting taxonomic depth. Provide -1 to
    disable confidence calculation, or 0 to calculate confidence but not
    apply it to limit the taxonomic depth of the assignments.
read_orientation : Str % Choices('same', 'reverse-complement'), optional
    Direction of reads with respect to reference sequences. same will cause
    reads to be classified unchanged; reverse-complement will cause reads
    to be reversed and complemented prior to classification. Default is to
    autodetect based on the confidence estimates for the first 100 reads.

Returns
-------
classification : FeatureData[Taxonomy]
	]]></help>
<macros>
    <import>qiime_citation.xml</import>
</macros>
<expand macro="qiime_citation"/>
</tool>