Mercurial > repos > florianbegusch > qiime2_suite
view qiime2-2020.8/qiime_sample-classifier_predict-classification.xml @ 20:d93d8888f0b0 draft
Uploaded
author | florianbegusch |
---|---|
date | Fri, 04 Sep 2020 12:44:24 +0000 |
parents | |
children |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_sample-classifier_predict-classification" name="qiime sample-classifier predict-classification" version="2020.8"> <description>Use trained classifier to predict target values for new samples.</description> <requirements> <requirement type="package" version="2020.8">qiime2</requirement> </requirements> <command><![CDATA[ qiime sample-classifier predict-classification --i-table=$itable --i-sample-estimator=$isampleestimator --p-n-jobs=$pnjobs --o-predictions=opredictions --o-probabilities=oprobabilities #if str($examples) != 'None': --examples=$examples #end if ; cp oprobabilities.qza $oprobabilities ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> <param format="qza,no_unzip.zip" label="--i-sample-estimator: ARTIFACT SampleEstimator[Classifier] Sample classifier trained with fit_classifier. [required]" name="isampleestimator" optional="False" type="data" /> <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" /> <data format="qza" label="${tool.name} on ${on_string}: probabilities.qza" name="oprobabilities" /> </outputs> <help><![CDATA[ Use trained classifier to predict target values for new samples. ############################################################### Use trained estimator to predict target values for new samples. These will typically be unseen samples, e.g., test data (derived manually or from split_table) or samples with unknown values, but can theoretically be any samples present in a feature table that contain overlapping features with the feature table used to train the estimator. Parameters ---------- table : FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. sample_estimator : SampleEstimator[Classifier] Sample classifier trained with fit_classifier. n_jobs : Int, optional Number of jobs to run in parallel. Returns ------- predictions : SampleData[ClassifierPredictions] Predicted target values for each input sample. probabilities : SampleData[Probabilities] Predicted class probabilities for each input sample. ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>