Mercurial > repos > florianbegusch > qiime2_suite
view qiime2-2020.8/qiime_sample-classifier_split-table.xml @ 20:d93d8888f0b0 draft
Uploaded
author | florianbegusch |
---|---|
date | Fri, 04 Sep 2020 12:44:24 +0000 |
parents | |
children |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_sample-classifier_split-table" name="qiime sample-classifier split-table" version="2020.8"> <description>Split a feature table into training and testing sets.</description> <requirements> <requirement type="package" version="2020.8">qiime2</requirement> </requirements> <command><![CDATA[ qiime sample-classifier split-table --i-table=$itable # if $input_files_mmetadatafile: # def list_dict_to_string(list_dict): # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') # for d in list_dict[1:]: # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') # end for # return $file_list # end def --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) # end if #if '__ob__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__ob__', '[') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if '__cb__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__cb__', ']') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if 'X' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('X', '\\') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if '__sq__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__sq__', "'") #set $mmetadatacolumn = $mmetadatacolumn_temp #end if #if '__db__' in str($mmetadatacolumn): #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__db__', '"') #set $mmetadatacolumn = $mmetadatacolumn_temp #end if --m-metadata-column=$mmetadatacolumn --p-test-size=$ptestsize #if str($prandomstate): --p-random-state=$prandomstate #end if #if $pnostratify: --p-no-stratify #end if #if str($pmissingsamples) != 'None': --p-missing-samples=$pmissingsamples #end if --o-training-table=otrainingtable --o-test-table=otesttable #if str($examples) != 'None': --examples=$examples #end if ; cp otesttable.qza $otesttable ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Balance⁴ | PercentileNormalized⁵ | Design⁶] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA" name="additional_input" optional="True" type="data" /> </repeat> <param label="--m-metadata-column: COLUMN MetadataColumn[Numeric | Categorical] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text" /> <param exclude_min="True" label="--p-test-size: PROPORTION Range(0.0, 1.0, inclusive_start=False) Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.2]" max="1.0" min="0.0" name="ptestsize" optional="True" type="float" value="0.2" /> <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> <param label="--p-no-stratify: Do not evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: True]" name="pnostratify" selected="False" type="boolean" /> <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="error">error</option> <option value="ignore">ignore</option> </param> <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: trainingtable.qza" name="otrainingtable" /> <data format="qza" label="${tool.name} on ${on_string}: testtable.qza" name="otesttable" /> </outputs> <help><![CDATA[ Split a feature table into training and testing sets. ############################################################### Split a feature table into training and testing sets. By default stratifies training and test sets on a metadata column, such that values in that column are evenly represented across training and test sets. Parameters ---------- table : FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Balance⁴ | PercentileNormalized⁵ | Design⁶] Feature table containing all features that should be used for target prediction. metadata : MetadataColumn[Numeric | Categorical] Numeric metadata column to use as prediction target. test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional Fraction of input samples to exclude from training set and use for classifier testing. random_state : Int, optional Seed used by random number generator. stratify : Bool, optional Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. missing_samples : Str % Choices('error', 'ignore'), optional How to handle missing samples in metadata. "error" will fail if missing samples are detected. "ignore" will cause the feature table and metadata to be filtered, so that only samples found in both files are retained. Returns ------- training_table : FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Balance⁴ | PercentileNormalized⁵ | Design⁶] Feature table containing training samples test_table : FeatureTable[Frequency¹ | RelativeFrequency² | PresenceAbsence³ | Balance⁴ | PercentileNormalized⁵ | Design⁶] Feature table containing test samples ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>