Mercurial > repos > florianbegusch > qiime2_suite
view qiime2/qiime_feature-classifier_classify-hybrid-vsearch-sklearn.xml @ 9:f190567fe3f6 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 14 Aug 2019 15:12:48 -0400 |
parents | |
children | a0a8d77a991c |
line wrap: on
line source
<?xml version="1.0" ?> <tool id="qiime_feature-classifier_classify-hybrid-vsearch-sklearn" name="qiime feature-classifier classify-hybrid-vsearch-sklearn" version="2019.7"> <description> - ALPHA Hybrid classifier: VSEARCH exact match + sklearn classifier</description> <requirements> <requirement type="package" version="2019.7">qiime2</requirement> </requirements> <command><![CDATA[ qiime feature-classifier classify-hybrid-vsearch-sklearn --i-query=$iquery --i-reference-reads=$ireferencereads #if str( $id_to_taxonomy_fp.selector ) == 'history' #set $tax = $id_to_taxonomy_fp.taxonomy_fp --i-reference-taxonomy '$tax' #else: #set $tax = $id_to_taxonomy_fp.taxonomy_fp.fields.path --i-reference-taxonomy '$tax' #end if #if str( $id_to_classifier_fp.selector ) == 'history' #set $classifier = $id_to_classifier_fp.classifier_fp --i-classifier '$classifier' #else: #set $classifier = $id_to_classifier_fp.classifier_fp.fields.path --i-classifier '$classifier' #end if #if str($pmaxaccepts): --p-maxaccepts=$pmaxaccepts #end if #if str($pconfidence): --p-confidence=$pconfidence #end if #if str($ppercidentity): --p-perc-identity=$ppercidentity #end if #if str($pquerycov): --p-query-cov=$pquerycov #end if #if str($pstrand) != 'None': --p-strand=$pstrand #end if #if str($pminconsensus): --p-min-consensus=$pminconsensus #end if #if str($preadorientation) != 'None': --p-read-orientation=$preadorientation #end if #set $pthreads = '${GALAXY_SLOTS:-4}' #if str($pthreads): #if str($pthreads): --p-threads="$pthreads" #end if #end if #if $pprefilter: --p-prefilter #end if #if str($psamplesize): --p-sample-size=$psamplesize #end if #if str($prandseed): --p-randseed=$prandseed #end if --o-classification=oclassification ; cp oclassification.qza $oclassification ]]></command> <inputs> <param format="qza,no_unzip.zip" label="--i-query: ARTIFACT FeatureData[Sequence] Sequences to classify taxonomically. [required]" name="iquery" optional="False" type="data"/> <param format="qza,no_unzip.zip" label="--i-reference-reads: ARTIFACT FeatureData[Sequence] reference sequences. [required]" name="ireferencereads" optional="False" type="data"/> <conditional name="id_to_taxonomy_fp" optional="True"> <param name="selector" type="select" label="Reference taxonomy to query"> <option value="cached">Public databases</option> <option value="history">Databases from your history</option> </param> <when value="cached"> <param argument="--taxonomy_fp" label="Reference taxonomy" type="select" optional="True"> <options from_data_table="qiime_taxonomy" /> </param> </when> <when value="history"> <param argument="--taxonomy_fp" type="data" format="qza,no_unzip.zip" label="Reference databases" optional="True" /> </when> </conditional> <conditional name="id_to_classifier_fp" optional="True"> <param name="selector" type="select" label="Reference classifier to query"> <option value="cached">Public classifiers</option> <option value="history">Classifiers from your history</option> </param> <when value="cached"> <param name="classifier_fp" label="Reference classifier" type="select" optional="True"> <options from_data_table="qiime_rep_set" /> </param> </when> <when value="history"> <param name="classifier_fp" type="data" format="qza,no_unzip.zip" label="Reference classifier" optional="True" /> </when> </conditional> <param label="--p-maxaccepts: VALUE Int % Range(1, None) | Str % Choices('all') Maximum number of hits to keep for each query. Set to 'all' to keep all hits > perc-identity similarity. [default: 10]" name="pmaxaccepts" optional="True" type="text" value="10" /> <param label="--p-confidence: VALUE Float % Range(0, 1, inclusive_end=True) | Str % Choices('disable') Confidence threshold for limiting taxonomic depth. Set to 'disable' to disable confidence calculation, or 0 to calculate confidence but not apply it to limit the taxonomic depth of the assignments. [default: 0.7]" name="pconfidence" optional="True" type="text" value="0.7" /> <param label="--p-perc-identity: PROPORTION Range(0.0, 1.0, inclusive_end=True) Percent sequence similarity to use for PREFILTER. Reject match if percent identity to query is lower. Set to a lower value to perform a rough pre-filter. This parameter is ignored if `prefilter` is disabled. [default: 0.5]" name="ppercidentity" optional="True" type="float" value="0.5" min="0" max="1" exclusive_end="False" /> <param label="--p-query-cov: PROPORTION Range(0.0, 1.0, inclusive_end=True) Query coverage threshold to use for PREFILTER. Reject match if query alignment coverage per high-scoring pair is lower. Set to a lower value to perform a rough pre-filter. This parameter is ignored if `prefilter` is disabled. [default: 0.8]" name="pquerycov" optional="True" type="float" value="0.8" min="0" max="1" exclusive_end="False" /> <param label="--p-strand: " name="pstrand" optional="True" type="select"> <option selected="True" value="None">Selection is Optional</option> <option value="both">both</option> <option value="plus">plus</option> </param> <param label="--p-min-consensus: NUMBER Range(0.5, 1.0, inclusive_start=False, inclusive_end=True) Minimum fraction of assignments must match top hit to be accepted as consensus assignment. [default: 0.51]" name="pminconsensus" optional="True" type="float" value="0.51" min="0.5" max="1" exclusive_end="True" /> <param label="--p-read-orientation: TEXT Choices('same', 'reverse-complement', 'auto') Direction of reads with respect to reference sequences in pre-trained sklearn classifier. same will cause reads to be classified unchanged; reverse-complement will cause reads to be reversed and complemented prior to classification. 'auto' will autodetect orientation based on the confidence estimates for the first 100 reads. [default: 'auto'] " name="preadorientation" optional="True" type="select" > <option value="None">Selection is Optional</option> <option value="same">same</option> <option value="reverse-complement">reverse-complement</option> <option selected="True" value="auto">auto</option> </param> <param label="--p-prefilter: --p-no-prefilter Toggle positive filter of query sequences on or off. [default: True]" name="pprefilter" selected="False" type="boolean"/> <param label="--p-sample-size: INTEGER Range(1, None) Randomly extract the given number of sequences from the reference database to use for prefiltering. This parameter is ignored if `prefilter` is disabled. [default: 1000]" name="psamplesize" optional="True" type="integer" value="1000" min="1"/> <param label="--p-randseed: INTEGER Use integer as a seed for the pseudo-random generator Range(0, None) used during prefiltering. A given seed always produces the same output, which is useful for replicability. Set to 0 to use a pseudo-random seed. This parameter is ignored if `prefilter` is disabled. [default: 0]" name="prandseed" optional="True" type="integer" value="0" min="0"/> </inputs> <outputs> <data format="qza" label="${tool.name} on ${on_string}: classification.qza" name="oclassification"/> </outputs> <help><![CDATA[ ALPHA Hybrid classifier: VSEARCH exact match + sklearn classifier ################################################################## NOTE: THIS PIPELINE IS AN ALPHA RELEASE. Please report bugs to https://forum.qiime2.org! Assign taxonomy to query sequences using hybrid classifier. First performs rough positive filter to remove artifact and low-coverage sequences (use "prefilter" parameter to toggle this step on or off). Second, performs VSEARCH exact match between query and reference_reads to find exact matches, followed by least common ancestor consensus taxonomy assignment from among maxaccepts top hits, min_consensus of which share that taxonomic assignment. Query sequences without an exact match are then classified with a pre-trained sklearn taxonomy classifier to predict the most likely taxonomic lineage. Parameters ---------- query : FeatureData[Sequence] Sequences to classify taxonomically. reference_reads : FeatureData[Sequence] reference sequences. reference_taxonomy : FeatureData[Taxonomy] reference taxonomy labels. classifier : TaxonomicClassifier Pre-trained sklearn taxonomic classifier for classifying the reads. maxaccepts : Int % Range(1, None) | Str % Choices('all'), optional Maximum number of hits to keep for each query. Set to "all" to keep all hits > perc_identity similarity. perc_identity : Float % Range(0.0, 1.0, inclusive_end=True), optional Percent sequence similarity to use for PREFILTER. Reject match if percent identity to query is lower. Set to a lower value to perform a rough pre-filter. This parameter is ignored if `prefilter` is disabled. query_cov : Float % Range(0.0, 1.0, inclusive_end=True), optional Query coverage threshold to use for PREFILTER. Reject match if query alignment coverage per high-scoring pair is lower. Set to a lower value to perform a rough pre-filter. This parameter is ignored if `prefilter` is disabled. strand : Str % Choices('both', 'plus'), optional Align against reference sequences in forward ("plus") or both directions ("both"). min_consensus : Float % Range(0.5, 1.0, inclusive_start=False, inclusive_end=True), optional Minimum fraction of assignments must match top hit to be accepted as consensus assignment. reads_per_batch : Int % Range(0, None), optional Number of reads to process in each batch for sklearn classification. If "auto", this parameter is autoscaled to min(number of query sequences / threads, 20000). confidence : Float % Range(0, 1, inclusive_end=True) | Str % Choices('disable'), optional Confidence threshold for limiting taxonomic depth. Set to "disable" to disable confidence calculation, or 0 to calculate confidence but not apply it to limit the taxonomic depth of the assignments. read_orientation : Str % Choices('same', 'reverse-complement', 'auto'), optional Direction of reads with respect to reference sequences in pre-trained sklearn classifier. same will cause reads to be classified unchanged; reverse-complement will cause reads to be reversed and complemented prior to classification. "auto" will autodetect orientation based on the confidence estimates for the first 100 reads. prefilter : Bool, optional Toggle positive filter of query sequences on or off. sample_size : Int % Range(1, None), optional Randomly extract the given number of sequences from the reference database to use for prefiltering. This parameter is ignored if `prefilter` is disabled. randseed : Int % Range(0, None), optional Use integer as a seed for the pseudo-random generator used during prefiltering. A given seed always produces the same output, which is useful for replicability. Set to 0 to use a pseudo-random seed. This parameter is ignored if `prefilter` is disabled. Returns ------- classification : FeatureData[Taxonomy] The resulting taxonomy classifications. ]]></help> <macros> <import>qiime_citation.xml</import> </macros> <expand macro="qiime_citation"/> </tool>