0
|
1 <?xml version="1.0" ?>
|
|
2 <tool id="qiime_sample-classifier_metatable" name="qiime sample-classifier metatable"
|
|
3 version="2020.8">
|
|
4 <description>Convert (and merge) positive numeric metadata (in)to feature table.</description>
|
|
5 <requirements>
|
|
6 <requirement type="package" version="2020.8">qiime2</requirement>
|
|
7 </requirements>
|
|
8 <command><![CDATA[
|
|
9 qiime sample-classifier metatable
|
|
10
|
|
11 #if str($itable) != 'None':
|
|
12 --i-table=$itable
|
|
13 #end if
|
|
14 # if $input_files_mmetadatafile:
|
|
15 # def list_dict_to_string(list_dict):
|
|
16 # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name')
|
|
17 # for d in list_dict[1:]:
|
|
18 # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name')
|
|
19 # end for
|
|
20 # return $file_list
|
|
21 # end def
|
|
22 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile)
|
|
23 # end if
|
|
24
|
|
25 #if str($pmissingsamples) != 'None':
|
|
26 --p-missing-samples=$pmissingsamples
|
|
27 #end if
|
|
28
|
|
29 #if str($pmissingvalues) != 'None':
|
|
30 --p-missing-values=$pmissingvalues
|
|
31 #end if
|
|
32
|
|
33 #if $pdropallunique:
|
|
34 --p-drop-all-unique
|
|
35 #end if
|
|
36
|
|
37 --o-converted-table=oconvertedtable
|
|
38
|
|
39 #if str($examples) != 'None':
|
|
40 --examples=$examples
|
|
41 #end if
|
|
42
|
|
43 ;
|
|
44 cp oconvertedtable.qza $oconvertedtable
|
|
45
|
|
46 ]]></command>
|
|
47 <inputs>
|
|
48 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [optional]" name="itable" optional="False" type="data" />
|
|
49 <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file">
|
|
50 <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA... (multiple Metadata file to convert to feature table. arguments will be merged) [required]" name="additional_input" optional="False" type="data" />
|
|
51 </repeat>
|
|
52 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select">
|
|
53 <option selected="True" value="None">Selection is Optional</option>
|
|
54 <option value="error">error</option>
|
|
55 <option value="ignore">ignore</option>
|
|
56 </param>
|
|
57 <param label="--p-missing-values: " name="pmissingvalues" optional="True" type="select">
|
|
58 <option selected="True" value="None">Selection is Optional</option>
|
|
59 <option value="drop_samples">drop_samples</option>
|
|
60 <option value="drop_features">drop_features</option>
|
|
61 <option value="error">error</option>
|
|
62 <option value="fill">fill</option>
|
|
63 </param>
|
|
64 <param label="--p-drop-all-unique: --p-drop-all-unique: / --p-no-drop-all-unique If True, columns that contain a unique value for every ID will be dropped. [default: False]" name="pdropallunique" selected="False" type="boolean" />
|
|
65 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" />
|
|
66
|
|
67 </inputs>
|
|
68
|
|
69 <outputs>
|
|
70 <data format="qza" label="${tool.name} on ${on_string}: convertedtable.qza" name="oconvertedtable" />
|
|
71
|
|
72 </outputs>
|
|
73
|
|
74 <help><![CDATA[
|
|
75 Convert (and merge) positive numeric metadata (in)to feature table.
|
|
76 ###############################################################
|
|
77
|
|
78 Convert numeric sample metadata from TSV file into a feature table.
|
|
79 Optionally merge with an existing feature table. Only numeric metadata will
|
|
80 be converted; categorical columns will be silently dropped. By default, if
|
|
81 a table is used as input only samples found in both the table and metadata
|
|
82 (intersection) are merged, and others are silently dropped. Set
|
|
83 missing_samples="error" to raise an error if samples found in the table are
|
|
84 missing from the metadata file. The metadata file can always contain a
|
|
85 superset of samples. Note that columns will be dropped if they are non-
|
|
86 numeric, contain no unique values (zero variance), contain only empty
|
|
87 cells, or contain negative values. This method currently only converts
|
|
88 postive numeric metadata into feature data. Tip: convert categorical
|
|
89 columns to dummy variables to include them in the output feature table.
|
|
90
|
|
91 Parameters
|
|
92 ----------
|
|
93 metadata : Metadata
|
|
94 Metadata file to convert to feature table.
|
|
95 table : FeatureTable[Frequency], optional
|
|
96 Feature table containing all features that should be used for target
|
|
97 prediction.
|
|
98 missing_samples : Str % Choices('error', 'ignore'), optional
|
|
99 How to handle missing samples in metadata. "error" will fail if missing
|
|
100 samples are detected. "ignore" will cause the feature table and
|
|
101 metadata to be filtered, so that only samples found in both files are
|
|
102 retained.
|
|
103 missing_values : Str % Choices('drop_samples', 'drop_features', 'error', 'fill'), optional
|
|
104 How to handle missing values (nans) in metadata. Either "drop_samples"
|
|
105 with missing values, "drop_features" with missing values, "fill"
|
|
106 missing values with zeros, or "error" if any missing values are found.
|
|
107 drop_all_unique : Bool, optional
|
|
108 If True, columns that contain a unique value for every ID will be
|
|
109 dropped.
|
|
110
|
|
111 Returns
|
|
112 -------
|
|
113 converted_table : FeatureTable[Frequency]
|
|
114 Converted feature table
|
|
115 ]]></help>
|
|
116 <macros>
|
|
117 <import>qiime_citation.xml</import>
|
|
118 </macros>
|
|
119 <expand macro="qiime_citation"/>
|
|
120 </tool> |