0
|
1 <?xml version="1.0" ?>
|
|
2 <tool id="qiime_sample-classifier_predict-classification" name="qiime sample-classifier predict-classification"
|
|
3 version="2020.8">
|
|
4 <description>Use trained classifier to predict target values for new samples.</description>
|
|
5 <requirements>
|
|
6 <requirement type="package" version="2020.8">qiime2</requirement>
|
|
7 </requirements>
|
|
8 <command><![CDATA[
|
|
9 qiime sample-classifier predict-classification
|
|
10
|
|
11 --i-table=$itable
|
|
12
|
|
13 --i-sample-estimator=$isampleestimator
|
|
14
|
|
15 --p-n-jobs=$pnjobs
|
|
16
|
|
17 --o-predictions=opredictions
|
|
18
|
|
19 --o-probabilities=oprobabilities
|
|
20
|
|
21 #if str($examples) != 'None':
|
|
22 --examples=$examples
|
|
23 #end if
|
|
24
|
|
25 ;
|
|
26 cp oprobabilities.qza $oprobabilities
|
|
27
|
|
28 ]]></command>
|
|
29 <inputs>
|
|
30 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" />
|
|
31 <param format="qza,no_unzip.zip" label="--i-sample-estimator: ARTIFACT SampleEstimator[Classifier] Sample classifier trained with fit_classifier. [required]" name="isampleestimator" optional="False" type="data" />
|
|
32 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" />
|
|
33
|
|
34 </inputs>
|
|
35
|
|
36 <outputs>
|
|
37 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" />
|
|
38 <data format="qza" label="${tool.name} on ${on_string}: probabilities.qza" name="oprobabilities" />
|
|
39
|
|
40 </outputs>
|
|
41
|
|
42 <help><![CDATA[
|
|
43 Use trained classifier to predict target values for new samples.
|
|
44 ###############################################################
|
|
45
|
|
46 Use trained estimator to predict target values for new samples. These will
|
|
47 typically be unseen samples, e.g., test data (derived manually or from
|
|
48 split_table) or samples with unknown values, but can theoretically be any
|
|
49 samples present in a feature table that contain overlapping features with
|
|
50 the feature table used to train the estimator.
|
|
51
|
|
52 Parameters
|
|
53 ----------
|
|
54 table : FeatureTable[Frequency]
|
|
55 Feature table containing all features that should be used for target
|
|
56 prediction.
|
|
57 sample_estimator : SampleEstimator[Classifier]
|
|
58 Sample classifier trained with fit_classifier.
|
|
59 n_jobs : Int, optional
|
|
60 Number of jobs to run in parallel.
|
|
61
|
|
62 Returns
|
|
63 -------
|
|
64 predictions : SampleData[ClassifierPredictions]
|
|
65 Predicted target values for each input sample.
|
|
66 probabilities : SampleData[Probabilities]
|
|
67 Predicted class probabilities for each input sample.
|
|
68 ]]></help>
|
|
69 <macros>
|
|
70 <import>qiime_citation.xml</import>
|
|
71 </macros>
|
|
72 <expand macro="qiime_citation"/>
|
|
73 </tool> |