comparison qiime2-2020.8/qiime_diversity_pcoa.xml @ 0:5c352d975ef7 draft

Uploaded
author florianbegusch
date Thu, 03 Sep 2020 09:33:04 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:5c352d975ef7
1 <?xml version="1.0" ?>
2 <tool id="qiime_diversity_pcoa" name="qiime diversity pcoa"
3 version="2020.8">
4 <description>Principal Coordinate Analysis</description>
5 <requirements>
6 <requirement type="package" version="2020.8">qiime2</requirement>
7 </requirements>
8 <command><![CDATA[
9 qiime diversity pcoa
10
11 --i-distance-matrix=$idistancematrix
12
13 #if str($pnumberofdimensions):
14 --p-number-of-dimensions=$pnumberofdimensions
15 #end if
16 --o-pcoa=opcoa
17
18 #if str($examples) != 'None':
19 --examples=$examples
20 #end if
21
22 ;
23 cp opcoa.qza $opcoa
24
25 ]]></command>
26 <inputs>
27 <param format="qza,no_unzip.zip" label="--i-distance-matrix: ARTIFACT DistanceMatrix The distance matrix on which PCoA should be computed. [required]" name="idistancematrix" optional="False" type="data" />
28 <param label="--p-number-of-dimensions: INTEGER Range(1, None) Dimensions to reduce the distance matrix to. This number determines how many eigenvectors and eigenvalues are returned,and influences the choice of algorithm used to compute them. By default, uses the default eigendecomposition method, SciPy\'s eigh, which computes all eigenvectors and eigenvalues in an exact manner. For very large matrices, this is expected to be slow. If a value is specified for this parameter, then the fast, heuristic eigendecomposition algorithm fsvd is used, which only computes and returns the number of dimensions specified, but suffers some degree of accuracy loss, the magnitude of which varies across different datasets. [optional]" name="pnumberofdimensions" optional="False" type="text" />
29 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" />
30
31 </inputs>
32
33 <outputs>
34 <data format="qza" label="${tool.name} on ${on_string}: pcoa.qza" name="opcoa" />
35
36 </outputs>
37
38 <help><![CDATA[
39 Principal Coordinate Analysis
40 ###############################################################
41
42 Apply principal coordinate analysis.
43
44 Parameters
45 ----------
46 distance_matrix : DistanceMatrix
47 The distance matrix on which PCoA should be computed.
48 number_of_dimensions : Int % Range(1, None), optional
49 Dimensions to reduce the distance matrix to. This number determines how
50 many eigenvectors and eigenvalues are returned,and influences the
51 choice of algorithm used to compute them. By default, uses the default
52 eigendecomposition method, SciPy's eigh, which computes all
53 eigenvectors and eigenvalues in an exact manner. For very large
54 matrices, this is expected to be slow. If a value is specified for this
55 parameter, then the fast, heuristic eigendecomposition algorithm fsvd
56 is used, which only computes and returns the number of dimensions
57 specified, but suffers some degree of accuracy loss, the magnitude of
58 which varies across different datasets.
59
60 Returns
61 -------
62 pcoa : PCoAResults
63 The resulting PCoA matrix.
64 ]]></help>
65 <macros>
66 <import>qiime_citation.xml</import>
67 </macros>
68 <expand macro="qiime_citation"/>
69 </tool>