Mercurial > repos > florianbegusch > qiime2_suite_zmf
comparison qiime2-2020.8/qiime_longitudinal_maturity-index.xml @ 0:5c352d975ef7 draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 03 Sep 2020 09:33:04 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:5c352d975ef7 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_longitudinal_maturity-index" name="qiime longitudinal maturity-index" | |
3 version="2020.8"> | |
4 <description>Microbial maturity index prediction.</description> | |
5 <requirements> | |
6 <requirement type="package" version="2020.8">qiime2</requirement> | |
7 </requirements> | |
8 <command><![CDATA[ | |
9 qiime longitudinal maturity-index | |
10 | |
11 --i-table=$itable | |
12 # if $input_files_mmetadatafile: | |
13 # def list_dict_to_string(list_dict): | |
14 # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
15 # for d in list_dict[1:]: | |
16 # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
17 # end for | |
18 # return $file_list | |
19 # end def | |
20 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
21 # end if | |
22 | |
23 #if '__ob__' in str($pstatecolumn): | |
24 #set $pstatecolumn_temp = $pstatecolumn.replace('__ob__', '[') | |
25 #set $pstatecolumn = $pstatecolumn_temp | |
26 #end if | |
27 #if '__cb__' in str($pstatecolumn): | |
28 #set $pstatecolumn_temp = $pstatecolumn.replace('__cb__', ']') | |
29 #set $pstatecolumn = $pstatecolumn_temp | |
30 #end if | |
31 #if 'X' in str($pstatecolumn): | |
32 #set $pstatecolumn_temp = $pstatecolumn.replace('X', '\\') | |
33 #set $pstatecolumn = $pstatecolumn_temp | |
34 #end if | |
35 #if '__sq__' in str($pstatecolumn): | |
36 #set $pstatecolumn_temp = $pstatecolumn.replace('__sq__', "'") | |
37 #set $pstatecolumn = $pstatecolumn_temp | |
38 #end if | |
39 #if '__db__' in str($pstatecolumn): | |
40 #set $pstatecolumn_temp = $pstatecolumn.replace('__db__', '"') | |
41 #set $pstatecolumn = $pstatecolumn_temp | |
42 #end if | |
43 | |
44 --p-state-column=$pstatecolumn | |
45 | |
46 | |
47 --p-group-by=$pgroupby | |
48 | |
49 --p-control=$pcontrol | |
50 | |
51 #if '__ob__' in str($pindividualidcolumn): | |
52 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__ob__', '[') | |
53 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
54 #end if | |
55 #if '__cb__' in str($pindividualidcolumn): | |
56 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__cb__', ']') | |
57 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
58 #end if | |
59 #if 'X' in str($pindividualidcolumn): | |
60 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('X', '\\') | |
61 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
62 #end if | |
63 #if '__sq__' in str($pindividualidcolumn): | |
64 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__sq__', "'") | |
65 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
66 #end if | |
67 #if '__db__' in str($pindividualidcolumn): | |
68 #set $pindividualidcolumn_temp = $pindividualidcolumn.replace('__db__', '"') | |
69 #set $pindividualidcolumn = $pindividualidcolumn_temp | |
70 #end if | |
71 | |
72 #if str($pindividualidcolumn): | |
73 --p-individual-id-column=$pindividualidcolumn | |
74 #end if | |
75 | |
76 #if str($pestimator) != 'None': | |
77 --p-estimator=$pestimator | |
78 #end if | |
79 | |
80 --p-n-estimators=$pnestimators | |
81 | |
82 --p-test-size=$ptestsize | |
83 | |
84 --p-step=$pstep | |
85 | |
86 --p-cv=$pcv | |
87 | |
88 #if str($prandomstate): | |
89 --p-random-state=$prandomstate | |
90 #end if | |
91 --p-n-jobs=$pnjobs | |
92 | |
93 #if $pparametertuning: | |
94 --p-parameter-tuning | |
95 #end if | |
96 | |
97 #if $poptimizefeatureselection: | |
98 --p-optimize-feature-selection | |
99 #end if | |
100 | |
101 #if $pstratify: | |
102 --p-stratify | |
103 #end if | |
104 | |
105 #if str($pmissingsamples) != 'None': | |
106 --p-missing-samples=$pmissingsamples | |
107 #end if | |
108 | |
109 --p-feature-count=$pfeaturecount | |
110 | |
111 --o-sample-estimator=osampleestimator | |
112 | |
113 --o-feature-importance=ofeatureimportance | |
114 | |
115 --o-predictions=opredictions | |
116 | |
117 --o-model-summary=omodelsummary | |
118 | |
119 --o-accuracy-results=oaccuracyresults | |
120 | |
121 --o-maz-scores=omazscores | |
122 | |
123 --o-clustermap=oclustermap | |
124 | |
125 --o-volatility-plots=ovolatilityplots | |
126 | |
127 #if str($examples) != 'None': | |
128 --examples=$examples | |
129 #end if | |
130 | |
131 ; | |
132 cp omazscores.qza $omazscores | |
133 | |
134 ; | |
135 qiime tools export oclustermap.qzv --output-path out | |
136 && mkdir -p '$oclustermap.files_path' | |
137 && cp -r out/* '$oclustermap.files_path' | |
138 && mv '$oclustermap.files_path/index.html' '$oclustermap' | |
139 | |
140 ; | |
141 qiime tools export ovolatilityplots.qzv --output-path out | |
142 && mkdir -p '$ovolatilityplots.files_path' | |
143 && cp -r out/* '$ovolatilityplots.files_path' | |
144 && mv '$ovolatilityplots.files_path/index.html' '$ovolatilityplots' | |
145 | |
146 ]]></command> | |
147 <inputs> | |
148 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> | |
149 <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file"> | |
150 <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA... (multiple arguments will be merged) [required]" name="additional_input" optional="False" type="data" /> | |
151 </repeat> | |
152 <param label="--p-state-column: TEXT Numeric metadata column containing sampling time (state) data to use as prediction target. [required]" name="pstatecolumn" optional="False" type="text" /> | |
153 <param label="--p-group-by: TEXT Categorical metadata column to use for plotting and significance testing between main treatment groups. [required]" name="pgroupby" optional="False" type="text" /> | |
154 <param label="--p-control: TEXT Value of group-by to use as control group. The regression model will be trained using only control group data, and the maturity scores of other groups consequently will be assessed relative to this group. [required]" name="pcontrol" optional="False" type="text" /> | |
155 <param label="--p-individual-id-column: TEXT Optional metadata column containing IDs for individual subjects. Adds individual subject (spaghetti) vectors to volatility charts if a column name is provided. [optional]" name="pindividualidcolumn" optional="False" type="text" /> | |
156 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
157 <option selected="True" value="None">Selection is Optional</option> | |
158 <option value="RandomForestRegressor">RandomForestRegressor</option> | |
159 <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> | |
160 <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> | |
161 <option value="AdaBoostRegressor">AdaBoostRegressor</option> | |
162 <option value="ElasticNet">ElasticNet</option> | |
163 <option value="Ridge">Ridge</option> | |
164 <option value="Lasso">Lasso</option> | |
165 <option value="KNeighborsRegressor">KNeighborsRegressor</option> | |
166 <option value="LinearSVR">LinearSVR</option> | |
167 <option value="SVR">SVR</option> | |
168 </param> | |
169 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> | |
170 <param exclude_min="True" label="--p-test-size: PROPORTION Range(0.0, 1.0, inclusive_start=False) Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.5]" max="1.0" min="0.0" name="ptestsize" optional="True" type="float" value="0.5" /> | |
171 <param exclude_min="True" label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" max="1.0" min="0.0" name="pstep" optional="True" type="float" value="0.05" /> | |
172 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> | |
173 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> | |
174 <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> | |
175 <param label="--p-optimize-feature-selection: --p-optimize-feature-selection: / --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean" /> | |
176 <param label="--p-stratify: --p-stratify: / --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" selected="False" type="boolean" /> | |
177 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
178 <option selected="True" value="None">Selection is Optional</option> | |
179 <option value="error">error</option> | |
180 <option value="ignore">ignore</option> | |
181 </param> | |
182 <param label="--p-feature-count: INTEGER Range(0, None) Filter feature table to include top N most important features. Set to zero to include all features. [default: 50]" min="0" name="pfeaturecount" optional="True" type="integer" value="50" /> | |
183 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> | |
184 | |
185 </inputs> | |
186 | |
187 <outputs> | |
188 <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator" /> | |
189 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> | |
190 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" /> | |
191 <data format="html" label="${tool.name} on ${on_string}: modelsummary.html" name="omodelsummary" /> | |
192 <data format="html" label="${tool.name} on ${on_string}: accuracyresults.html" name="oaccuracyresults" /> | |
193 <data format="qza" label="${tool.name} on ${on_string}: mazscores.qza" name="omazscores" /> | |
194 <data format="html" label="${tool.name} on ${on_string}: clustermap.html" name="oclustermap" /> | |
195 <data format="html" label="${tool.name} on ${on_string}: volatilityplots.html" name="ovolatilityplots" /> | |
196 | |
197 </outputs> | |
198 | |
199 <help><![CDATA[ | |
200 Microbial maturity index prediction. | |
201 ############################################################### | |
202 | |
203 Calculates a "microbial maturity" index from a regression model trained on | |
204 feature data to predict a given continuous metadata column, e.g., to | |
205 predict age as a function of microbiota composition. The model is trained | |
206 on a subset of control group samples, then predicts the column value for | |
207 all samples. This visualization computes maturity index z-scores to compare | |
208 relative "maturity" between each group, as described in | |
209 doi:10.1038/nature13421. This method can be used to predict between-group | |
210 differences in relative trajectory across any type of continuous metadata | |
211 gradient, e.g., intestinal microbiome development by age, microbial | |
212 succession during wine fermentation, or microbial community differences | |
213 along environmental gradients, as a function of two or more different | |
214 "treatment" groups. | |
215 | |
216 Parameters | |
217 ---------- | |
218 table : FeatureTable[Frequency] | |
219 Feature table containing all features that should be used for target | |
220 prediction. | |
221 metadata : Metadata | |
222 state_column : Str | |
223 Numeric metadata column containing sampling time (state) data to use as | |
224 prediction target. | |
225 group_by : Str | |
226 Categorical metadata column to use for plotting and significance | |
227 testing between main treatment groups. | |
228 control : Str | |
229 Value of group_by to use as control group. The regression model will be | |
230 trained using only control group data, and the maturity scores of other | |
231 groups consequently will be assessed relative to this group. | |
232 individual_id_column : Str, optional | |
233 Optional metadata column containing IDs for individual subjects. Adds | |
234 individual subject (spaghetti) vectors to volatility charts if a column | |
235 name is provided. | |
236 estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional | |
237 Regression model to use for prediction. | |
238 n_estimators : Int % Range(1, None), optional | |
239 Number of trees to grow for estimation. More trees will improve | |
240 predictive accuracy up to a threshold level, but will also increase | |
241 time and memory requirements. This parameter only affects ensemble | |
242 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
243 GradientBoosting. | |
244 test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
245 Fraction of input samples to exclude from training set and use for | |
246 classifier testing. | |
247 step : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
248 If optimize_feature_selection is True, step is the percentage of | |
249 features to remove at each iteration. | |
250 cv : Int % Range(1, None), optional | |
251 Number of k-fold cross-validations to perform. | |
252 random_state : Int, optional | |
253 Seed used by random number generator. | |
254 n_jobs : Int, optional | |
255 Number of jobs to run in parallel. | |
256 parameter_tuning : Bool, optional | |
257 Automatically tune hyperparameters using random grid search. | |
258 optimize_feature_selection : Bool, optional | |
259 Automatically optimize input feature selection using recursive feature | |
260 elimination. | |
261 stratify : Bool, optional | |
262 Evenly stratify training and test data among metadata categories. If | |
263 True, all values in column must match at least two samples. | |
264 missing_samples : Str % Choices('error', 'ignore'), optional | |
265 How to handle missing samples in metadata. "error" will fail if missing | |
266 samples are detected. "ignore" will cause the feature table and | |
267 metadata to be filtered, so that only samples found in both files are | |
268 retained. | |
269 feature_count : Int % Range(0, None), optional | |
270 Filter feature table to include top N most important features. Set to | |
271 zero to include all features. | |
272 | |
273 Returns | |
274 ------- | |
275 sample_estimator : SampleEstimator[Regressor] | |
276 Trained sample estimator. | |
277 feature_importance : FeatureData[Importance] | |
278 Importance of each input feature to model accuracy. | |
279 predictions : SampleData[RegressorPredictions] | |
280 Predicted target values for each input sample. | |
281 model_summary : Visualization | |
282 Summarized parameter and (if enabled) feature selection information for | |
283 the trained estimator. | |
284 accuracy_results : Visualization | |
285 Accuracy results visualization. | |
286 maz_scores : SampleData[RegressorPredictions] | |
287 Microbiota-for-age z-score predictions. | |
288 clustermap : Visualization | |
289 Heatmap of important feature abundance at each time point in each | |
290 group. | |
291 volatility_plots : Visualization | |
292 Interactive volatility plots of MAZ and maturity scores, target | |
293 (column) predictions, and the sample metadata. | |
294 ]]></help> | |
295 <macros> | |
296 <import>qiime_citation.xml</import> | |
297 </macros> | |
298 <expand macro="qiime_citation"/> | |
299 </tool> |