Mercurial > repos > florianbegusch > qiime2_suite_zmf
comparison qiime2-2020.8/qiime_sample-classifier_classify-samples-ncv.xml @ 0:5c352d975ef7 draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 03 Sep 2020 09:33:04 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:5c352d975ef7 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_classify-samples-ncv" name="qiime sample-classifier classify-samples-ncv" | |
3 version="2020.8"> | |
4 <description>Nested cross-validated supervised learning classifier.</description> | |
5 <requirements> | |
6 <requirement type="package" version="2020.8">qiime2</requirement> | |
7 </requirements> | |
8 <command><![CDATA[ | |
9 qiime sample-classifier classify-samples-ncv | |
10 | |
11 --i-table=$itable | |
12 # if $input_files_mmetadatafile: | |
13 # def list_dict_to_string(list_dict): | |
14 # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
15 # for d in list_dict[1:]: | |
16 # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
17 # end for | |
18 # return $file_list | |
19 # end def | |
20 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
21 # end if | |
22 | |
23 #if '__ob__' in str($mmetadatacolumn): | |
24 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__ob__', '[') | |
25 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
26 #end if | |
27 #if '__cb__' in str($mmetadatacolumn): | |
28 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__cb__', ']') | |
29 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
30 #end if | |
31 #if 'X' in str($mmetadatacolumn): | |
32 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('X', '\\') | |
33 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
34 #end if | |
35 #if '__sq__' in str($mmetadatacolumn): | |
36 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__sq__', "'") | |
37 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
38 #end if | |
39 #if '__db__' in str($mmetadatacolumn): | |
40 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__db__', '"') | |
41 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
42 #end if | |
43 | |
44 --m-metadata-column=$mmetadatacolumn | |
45 | |
46 | |
47 --p-cv=$pcv | |
48 | |
49 #if str($prandomstate): | |
50 --p-random-state=$prandomstate | |
51 #end if | |
52 --p-n-jobs=$pnjobs | |
53 | |
54 --p-n-estimators=$pnestimators | |
55 | |
56 #if str($pestimator) != 'None': | |
57 --p-estimator=$pestimator | |
58 #end if | |
59 | |
60 #if $pparametertuning: | |
61 --p-parameter-tuning | |
62 #end if | |
63 | |
64 #if str($pmissingsamples) != 'None': | |
65 --p-missing-samples=$pmissingsamples | |
66 #end if | |
67 | |
68 --o-predictions=opredictions | |
69 | |
70 --o-feature-importance=ofeatureimportance | |
71 | |
72 --o-probabilities=oprobabilities | |
73 | |
74 #if str($examples) != 'None': | |
75 --examples=$examples | |
76 #end if | |
77 | |
78 ; | |
79 cp oprobabilities.qza $oprobabilities | |
80 | |
81 ]]></command> | |
82 <inputs> | |
83 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> | |
84 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | |
85 <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA" name="additional_input" optional="True" type="data" /> | |
86 </repeat> | |
87 <param label="--m-metadata-column: COLUMN MetadataColumn[Categorical] Categorical metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text" /> | |
88 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> | |
89 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> | |
90 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> | |
91 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
92 <option selected="True" value="None">Selection is Optional</option> | |
93 <option value="RandomForestClassifier">RandomForestClassifier</option> | |
94 <option value="ExtraTreesClassifier">ExtraTreesClassifier</option> | |
95 <option value="GradientBoostingClassifier">GradientBoostingClassifier</option> | |
96 <option value="AdaBoostClassifier">AdaBoostClassifier</option> | |
97 <option value="KNeighborsClassifier">KNeighborsClassifier</option> | |
98 <option value="LinearSVC">LinearSVC</option> | |
99 <option value="SVC">SVC</option> | |
100 </param> | |
101 <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> | |
102 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
103 <option selected="True" value="None">Selection is Optional</option> | |
104 <option value="error">error</option> | |
105 <option value="ignore">ignore</option> | |
106 </param> | |
107 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> | |
108 | |
109 </inputs> | |
110 | |
111 <outputs> | |
112 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" /> | |
113 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> | |
114 <data format="qza" label="${tool.name} on ${on_string}: probabilities.qza" name="oprobabilities" /> | |
115 | |
116 </outputs> | |
117 | |
118 <help><![CDATA[ | |
119 Nested cross-validated supervised learning classifier. | |
120 ############################################################### | |
121 | |
122 Predicts a categorical sample metadata column using a supervised learning | |
123 classifier. Uses nested stratified k-fold cross validation for automated | |
124 hyperparameter optimization and sample prediction. Outputs predicted values | |
125 for each input sample, and relative importance of each feature for model | |
126 accuracy. | |
127 | |
128 Parameters | |
129 ---------- | |
130 table : FeatureTable[Frequency] | |
131 Feature table containing all features that should be used for target | |
132 prediction. | |
133 metadata : MetadataColumn[Categorical] | |
134 Categorical metadata column to use as prediction target. | |
135 cv : Int % Range(1, None), optional | |
136 Number of k-fold cross-validations to perform. | |
137 random_state : Int, optional | |
138 Seed used by random number generator. | |
139 n_jobs : Int, optional | |
140 Number of jobs to run in parallel. | |
141 n_estimators : Int % Range(1, None), optional | |
142 Number of trees to grow for estimation. More trees will improve | |
143 predictive accuracy up to a threshold level, but will also increase | |
144 time and memory requirements. This parameter only affects ensemble | |
145 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
146 GradientBoosting. | |
147 estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional | |
148 Estimator method to use for sample prediction. | |
149 parameter_tuning : Bool, optional | |
150 Automatically tune hyperparameters using random grid search. | |
151 missing_samples : Str % Choices('error', 'ignore'), optional | |
152 How to handle missing samples in metadata. "error" will fail if missing | |
153 samples are detected. "ignore" will cause the feature table and | |
154 metadata to be filtered, so that only samples found in both files are | |
155 retained. | |
156 | |
157 Returns | |
158 ------- | |
159 predictions : SampleData[ClassifierPredictions] | |
160 Predicted target values for each input sample. | |
161 feature_importance : FeatureData[Importance] | |
162 Importance of each input feature to model accuracy. | |
163 probabilities : SampleData[Probabilities] | |
164 Predicted class probabilities for each input sample. | |
165 ]]></help> | |
166 <macros> | |
167 <import>qiime_citation.xml</import> | |
168 </macros> | |
169 <expand macro="qiime_citation"/> | |
170 </tool> |