Mercurial > repos > florianbegusch > qiime2_suite_zmf
comparison qiime2-2020.8/qiime_sample-classifier_regress-samples-ncv.xml @ 0:5c352d975ef7 draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 03 Sep 2020 09:33:04 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:5c352d975ef7 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_regress-samples-ncv" name="qiime sample-classifier regress-samples-ncv" | |
3 version="2020.8"> | |
4 <description>Nested cross-validated supervised learning regressor.</description> | |
5 <requirements> | |
6 <requirement type="package" version="2020.8">qiime2</requirement> | |
7 </requirements> | |
8 <command><![CDATA[ | |
9 qiime sample-classifier regress-samples-ncv | |
10 | |
11 --i-table=$itable | |
12 # if $input_files_mmetadatafile: | |
13 # def list_dict_to_string(list_dict): | |
14 # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
15 # for d in list_dict[1:]: | |
16 # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
17 # end for | |
18 # return $file_list | |
19 # end def | |
20 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
21 # end if | |
22 | |
23 #if '__ob__' in str($mmetadatacolumn): | |
24 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__ob__', '[') | |
25 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
26 #end if | |
27 #if '__cb__' in str($mmetadatacolumn): | |
28 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__cb__', ']') | |
29 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
30 #end if | |
31 #if 'X' in str($mmetadatacolumn): | |
32 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('X', '\\') | |
33 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
34 #end if | |
35 #if '__sq__' in str($mmetadatacolumn): | |
36 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__sq__', "'") | |
37 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
38 #end if | |
39 #if '__db__' in str($mmetadatacolumn): | |
40 #set $mmetadatacolumn_temp = $mmetadatacolumn.replace('__db__', '"') | |
41 #set $mmetadatacolumn = $mmetadatacolumn_temp | |
42 #end if | |
43 | |
44 --m-metadata-column=$mmetadatacolumn | |
45 | |
46 | |
47 --p-cv=$pcv | |
48 | |
49 #if str($prandomstate): | |
50 --p-random-state=$prandomstate | |
51 #end if | |
52 --p-n-jobs=$pnjobs | |
53 | |
54 --p-n-estimators=$pnestimators | |
55 | |
56 #if str($pestimator) != 'None': | |
57 --p-estimator=$pestimator | |
58 #end if | |
59 | |
60 #if $pstratify: | |
61 --p-stratify | |
62 #end if | |
63 | |
64 #if $pparametertuning: | |
65 --p-parameter-tuning | |
66 #end if | |
67 | |
68 #if str($pmissingsamples) != 'None': | |
69 --p-missing-samples=$pmissingsamples | |
70 #end if | |
71 | |
72 --o-predictions=opredictions | |
73 | |
74 --o-feature-importance=ofeatureimportance | |
75 | |
76 #if str($examples) != 'None': | |
77 --examples=$examples | |
78 #end if | |
79 | |
80 ; | |
81 cp ofeatureimportance.qza $ofeatureimportance | |
82 | |
83 ]]></command> | |
84 <inputs> | |
85 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data" /> | |
86 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | |
87 <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA" name="additional_input" optional="True" type="data" /> | |
88 </repeat> | |
89 <param label="--m-metadata-column: COLUMN MetadataColumn[Numeric] Numeric metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text" /> | |
90 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" min="1" name="pcv" optional="True" type="integer" value="5" /> | |
91 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="False" type="text" /> | |
92 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" min="1" name="pnestimators" optional="True" type="integer" value="100" /> | |
93 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
94 <option selected="True" value="None">Selection is Optional</option> | |
95 <option value="RandomForestRegressor">RandomForestRegressor</option> | |
96 <option value="ExtraTreesRegressor">ExtraTreesRegressor</option> | |
97 <option value="GradientBoostingRegressor">GradientBoostingRegressor</option> | |
98 <option value="AdaBoostRegressor">AdaBoostRegressor</option> | |
99 <option value="ElasticNet">ElasticNet</option> | |
100 <option value="Ridge">Ridge</option> | |
101 <option value="Lasso">Lasso</option> | |
102 <option value="KNeighborsRegressor">KNeighborsRegressor</option> | |
103 <option value="LinearSVR">LinearSVR</option> | |
104 <option value="SVR">SVR</option> | |
105 </param> | |
106 <param label="--p-stratify: --p-stratify: / --p-no-stratify Evenly stratify training and test data among metadata categories. If True, all values in column must match at least two samples. [default: False]" name="pstratify" selected="False" type="boolean" /> | |
107 <param label="--p-parameter-tuning: --p-parameter-tuning: / --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean" /> | |
108 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
109 <option selected="True" value="None">Selection is Optional</option> | |
110 <option value="error">error</option> | |
111 <option value="ignore">ignore</option> | |
112 </param> | |
113 <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> | |
114 | |
115 </inputs> | |
116 | |
117 <outputs> | |
118 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions" /> | |
119 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance" /> | |
120 | |
121 </outputs> | |
122 | |
123 <help><![CDATA[ | |
124 Nested cross-validated supervised learning regressor. | |
125 ############################################################### | |
126 | |
127 Predicts a continuous sample metadata column using a supervised learning | |
128 regressor. Uses nested stratified k-fold cross validation for automated | |
129 hyperparameter optimization and sample prediction. Outputs predicted values | |
130 for each input sample, and relative importance of each feature for model | |
131 accuracy. | |
132 | |
133 Parameters | |
134 ---------- | |
135 table : FeatureTable[Frequency] | |
136 Feature table containing all features that should be used for target | |
137 prediction. | |
138 metadata : MetadataColumn[Numeric] | |
139 Numeric metadata column to use as prediction target. | |
140 cv : Int % Range(1, None), optional | |
141 Number of k-fold cross-validations to perform. | |
142 random_state : Int, optional | |
143 Seed used by random number generator. | |
144 n_jobs : Int, optional | |
145 Number of jobs to run in parallel. | |
146 n_estimators : Int % Range(1, None), optional | |
147 Number of trees to grow for estimation. More trees will improve | |
148 predictive accuracy up to a threshold level, but will also increase | |
149 time and memory requirements. This parameter only affects ensemble | |
150 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
151 GradientBoosting. | |
152 estimator : Str % Choices('RandomForestRegressor', 'ExtraTreesRegressor', 'GradientBoostingRegressor', 'AdaBoostRegressor', 'ElasticNet', 'Ridge', 'Lasso', 'KNeighborsRegressor', 'LinearSVR', 'SVR'), optional | |
153 Estimator method to use for sample prediction. | |
154 stratify : Bool, optional | |
155 Evenly stratify training and test data among metadata categories. If | |
156 True, all values in column must match at least two samples. | |
157 parameter_tuning : Bool, optional | |
158 Automatically tune hyperparameters using random grid search. | |
159 missing_samples : Str % Choices('error', 'ignore'), optional | |
160 How to handle missing samples in metadata. "error" will fail if missing | |
161 samples are detected. "ignore" will cause the feature table and | |
162 metadata to be filtered, so that only samples found in both files are | |
163 retained. | |
164 | |
165 Returns | |
166 ------- | |
167 predictions : SampleData[RegressorPredictions] | |
168 Predicted target values for each input sample. | |
169 feature_importance : FeatureData[Importance] | |
170 Importance of each input feature to model accuracy. | |
171 ]]></help> | |
172 <macros> | |
173 <import>qiime_citation.xml</import> | |
174 </macros> | |
175 <expand macro="qiime_citation"/> | |
176 </tool> |