Mercurial > repos > florianbegusch > qiime2_suite_zmf
diff qiime2-2020.8/qiime_sample-classifier_metatable.xml @ 0:5c352d975ef7 draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 03 Sep 2020 09:33:04 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/qiime2-2020.8/qiime_sample-classifier_metatable.xml Thu Sep 03 09:33:04 2020 +0000 @@ -0,0 +1,120 @@ +<?xml version="1.0" ?> +<tool id="qiime_sample-classifier_metatable" name="qiime sample-classifier metatable" + version="2020.8"> + <description>Convert (and merge) positive numeric metadata (in)to feature table.</description> + <requirements> + <requirement type="package" version="2020.8">qiime2</requirement> + </requirements> + <command><![CDATA[ +qiime sample-classifier metatable + +#if str($itable) != 'None': +--i-table=$itable +#end if +# if $input_files_mmetadatafile: + # def list_dict_to_string(list_dict): + # set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') + # for d in list_dict[1:]: + # set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') + # end for + # return $file_list + # end def +--m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) +# end if + +#if str($pmissingsamples) != 'None': +--p-missing-samples=$pmissingsamples +#end if + +#if str($pmissingvalues) != 'None': +--p-missing-values=$pmissingvalues +#end if + +#if $pdropallunique: + --p-drop-all-unique +#end if + +--o-converted-table=oconvertedtable + +#if str($examples) != 'None': +--examples=$examples +#end if + +; +cp oconvertedtable.qza $oconvertedtable + + ]]></command> + <inputs> + <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [optional]" name="itable" optional="False" type="data" /> + <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file"> + <param format="tabular,qza,no_unzip.zip" label="--m-metadata-file: METADATA... (multiple Metadata file to convert to feature table. arguments will be merged) [required]" name="additional_input" optional="False" type="data" /> + </repeat> + <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="error">error</option> + <option value="ignore">ignore</option> + </param> + <param label="--p-missing-values: " name="pmissingvalues" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="drop_samples">drop_samples</option> + <option value="drop_features">drop_features</option> + <option value="error">error</option> + <option value="fill">fill</option> + </param> + <param label="--p-drop-all-unique: --p-drop-all-unique: / --p-no-drop-all-unique If True, columns that contain a unique value for every ID will be dropped. [default: False]" name="pdropallunique" selected="False" type="boolean" /> + <param label="--examples: Show usage examples and exit." name="examples" optional="False" type="data" /> + + </inputs> + + <outputs> + <data format="qza" label="${tool.name} on ${on_string}: convertedtable.qza" name="oconvertedtable" /> + + </outputs> + + <help><![CDATA[ +Convert (and merge) positive numeric metadata (in)to feature table. +############################################################### + +Convert numeric sample metadata from TSV file into a feature table. +Optionally merge with an existing feature table. Only numeric metadata will +be converted; categorical columns will be silently dropped. By default, if +a table is used as input only samples found in both the table and metadata +(intersection) are merged, and others are silently dropped. Set +missing_samples="error" to raise an error if samples found in the table are +missing from the metadata file. The metadata file can always contain a +superset of samples. Note that columns will be dropped if they are non- +numeric, contain no unique values (zero variance), contain only empty +cells, or contain negative values. This method currently only converts +postive numeric metadata into feature data. Tip: convert categorical +columns to dummy variables to include them in the output feature table. + +Parameters +---------- +metadata : Metadata + Metadata file to convert to feature table. +table : FeatureTable[Frequency], optional + Feature table containing all features that should be used for target + prediction. +missing_samples : Str % Choices('error', 'ignore'), optional + How to handle missing samples in metadata. "error" will fail if missing + samples are detected. "ignore" will cause the feature table and + metadata to be filtered, so that only samples found in both files are + retained. +missing_values : Str % Choices('drop_samples', 'drop_features', 'error', 'fill'), optional + How to handle missing values (nans) in metadata. Either "drop_samples" + with missing values, "drop_features" with missing values, "fill" + missing values with zeros, or "error" if any missing values are found. +drop_all_unique : Bool, optional + If True, columns that contain a unique value for every ID will be + dropped. + +Returns +------- +converted_table : FeatureTable[Frequency] + Converted feature table + ]]></help> + <macros> + <import>qiime_citation.xml</import> + </macros> + <expand macro="qiime_citation"/> +</tool> \ No newline at end of file