Mercurial > repos > florianbegusch > qiime2_wrappers
comparison qiime2/qiime_sample-classifier_classify-samples.xml @ 2:149432539226 draft
Uploaded
author | florianbegusch |
---|---|
date | Wed, 17 Jul 2019 01:49:31 -0400 |
parents | |
children | 71f124e02000 |
comparison
equal
deleted
inserted
replaced
1:6851c25d84b7 | 2:149432539226 |
---|---|
1 <?xml version="1.0" ?> | |
2 <tool id="qiime_sample-classifier_classify-samples" name="qiime sample-classifier classify-samples" version="2019.4"> | |
3 <description> - Train and test a cross-validated supervised learning classifier.</description> | |
4 <requirements> | |
5 <requirement type="package" version="2019.4">qiime2</requirement> | |
6 </requirements> | |
7 <command><![CDATA[ | |
8 qiime sample-classifier classify-samples | |
9 | |
10 --i-table=$itable | |
11 --m-metadata-column="$mmetadatacolumn" | |
12 | |
13 #if $ptestsize: | |
14 --p-test-size=$ptestsize | |
15 #end if | |
16 | |
17 #if $pstep: | |
18 --p-step=$pstep | |
19 #end if | |
20 | |
21 #if $pcv: | |
22 --p-cv=$pcv | |
23 #end if | |
24 | |
25 #if str($prandomstate): | |
26 --p-random-state="$prandomstate" | |
27 #end if | |
28 | |
29 #set $pnjobs = '${GALAXY_SLOTS:-4}' | |
30 | |
31 #if str($pnjobs): | |
32 --p-n-jobs="$pnjobs" | |
33 #end if | |
34 | |
35 | |
36 #if $pnestimators: | |
37 --p-n-estimators=$pnestimators | |
38 #end if | |
39 | |
40 #if str($pestimator) != 'None': | |
41 --p-estimator=$pestimator | |
42 #end if | |
43 | |
44 #if $poptimizefeatureselection: | |
45 --p-optimize-feature-selection | |
46 #end if | |
47 | |
48 #if $pparametertuning: | |
49 --p-parameter-tuning | |
50 #end if | |
51 | |
52 #if str($ppalette) != 'None': | |
53 --p-palette=$ppalette | |
54 #end if | |
55 | |
56 #if str($pmissingsamples) != 'None': | |
57 --p-missing-samples=$pmissingsamples | |
58 #end if | |
59 | |
60 | |
61 #if $input_files_mmetadatafile: | |
62 #def list_dict_to_string(list_dict): | |
63 #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') | |
64 #for d in list_dict[1:]: | |
65 #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') | |
66 #end for | |
67 #return $file_list | |
68 #end def | |
69 --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) | |
70 #end if | |
71 | |
72 | |
73 --o-sample-estimator=osampleestimator | |
74 --o-feature-importance=ofeatureimportance | |
75 --o-predictions=opredictions | |
76 --o-model-summary=omodelsummary | |
77 --o-accuracy-results=oaccuracyresults | |
78 ; | |
79 cp osampleestimator.qza $osampleestimator; | |
80 cp ofeatureimportance.qza $ofeatureimportance; | |
81 cp opredictions.qza $opredictions; | |
82 qiime tools export --input-path omodelsummary.qzv --output-path out && mkdir -p '$omodelsummary.files_path' | |
83 && cp -r out/* '$omodelsummary.files_path' | |
84 && mv '$omodelsummary.files_path/index.html' '$omodelsummary'; | |
85 qiime tools export --input-path oaccuracyresults.qzv --output-path out && mkdir -p '$oaccuracyresults.files_path' | |
86 && cp -r out/* '$oaccuracyresults.files_path' | |
87 && mv '$oaccuracyresults.files_path/index.html' '$oaccuracyresults' | |
88 ]]></command> | |
89 <inputs> | |
90 <param format="qza,no_unzip.zip" label="--i-table: ARTIFACT FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> | |
91 <param label="--m-metadata-column: COLUMN MetadataColumn[Categorical] Categorical metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> | |
92 <param label="--p-test-size: PROPORTION Range(0.0, 1.0, inclusive_start=False) Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.2]" name="ptestsize" optional="True" type="float" value="0.2" min="0" max="1" exclusive_start="True"/> | |
93 <param label="--p-step: PROPORTION Range(0.0, 1.0, inclusive_start=False) If optimize-feature-selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" value="0.05" min="0" max="1" exclusive_start="True"/> | |
94 <param label="--p-cv: INTEGER Number of k-fold cross-validations to perform. Range(1, None) [default: 5]" name="pcv" optional="True" type="integer" value="5" min="1"/> | |
95 <param label="--p-random-state: INTEGER Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="integer"/> | |
96 <param label="--p-n-estimators: INTEGER Range(1, None) Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100" min="1"/> | |
97 <param label="--p-estimator: " name="pestimator" optional="True" type="select"> | |
98 <option selected="True" value="None">Selection is Optional</option> | |
99 <option value="RandomForestClassifier">RandomForestClassifier</option> | |
100 <option value="ExtraTreesClassifier">ExtraTreesClassifier</option> | |
101 <option value="GradientBoostingClassifier">GradientBoostingClassifier</option> | |
102 <option value="AdaBoostClassifier">AdaBoostClassifier</option> | |
103 <option value="KNeighborsClassifier">KNeighborsClassifier</option> | |
104 <option value="LinearSVC">LinearSVC</option> | |
105 <option value="SVC">SVC</option> | |
106 </param> | |
107 <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" selected="False" type="boolean"/> | |
108 <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" selected="False" type="boolean"/> | |
109 <param label="--p-palette: " name="ppalette" optional="True" type="select"> | |
110 <option selected="True" value="None">Selection is Optional</option> | |
111 <option value="YellowOrangeBrown">YellowOrangeBrown</option> | |
112 <option value="YellowOrangeRed">YellowOrangeRed</option> | |
113 <option value="OrangeRed">OrangeRed</option> | |
114 <option value="PurpleRed">PurpleRed</option> | |
115 <option value="RedPurple">RedPurple</option> | |
116 <option value="BluePurple">BluePurple</option> | |
117 <option value="GreenBlue">GreenBlue</option> | |
118 <option value="PurpleBlue">PurpleBlue</option> | |
119 <option value="YellowGreen">YellowGreen</option> | |
120 <option value="summer">summer</option> | |
121 <option value="copper">copper</option> | |
122 <option value="viridis">viridis</option> | |
123 <option value="plasma">plasma</option> | |
124 <option value="inferno">inferno</option> | |
125 <option value="magma">magma</option> | |
126 <option value="sirocco">sirocco</option> | |
127 <option value="drifting">drifting</option> | |
128 <option value="melancholy">melancholy</option> | |
129 <option value="enigma">enigma</option> | |
130 <option value="eros">eros</option> | |
131 <option value="spectre">spectre</option> | |
132 <option value="ambition">ambition</option> | |
133 <option value="mysteriousstains">mysteriousstains</option> | |
134 <option value="daydream">daydream</option> | |
135 <option value="solano">solano</option> | |
136 <option value="navarro">navarro</option> | |
137 <option value="dandelions">dandelions</option> | |
138 <option value="deepblue">deepblue</option> | |
139 <option value="verve">verve</option> | |
140 <option value="greyscale">greyscale</option> | |
141 </param> | |
142 <param label="--p-missing-samples: " name="pmissingsamples" optional="True" type="select"> | |
143 <option selected="True" value="None">Selection is Optional</option> | |
144 <option value="error">error</option> | |
145 <option value="ignore">ignore</option> | |
146 </param> | |
147 | |
148 <repeat name="input_files_mmetadatafile" optional="True" title="--m-metadata-file"> | |
149 <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [optional]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> | |
150 </repeat> | |
151 | |
152 </inputs> | |
153 <outputs> | |
154 <data format="qza" label="${tool.name} on ${on_string}: sampleestimator.qza" name="osampleestimator"/> | |
155 <data format="qza" label="${tool.name} on ${on_string}: featureimportance.qza" name="ofeatureimportance"/> | |
156 <data format="qza" label="${tool.name} on ${on_string}: predictions.qza" name="opredictions"/> | |
157 <data format="html" label="${tool.name} on ${on_string}: modelsummary.qzv" name="omodelsummary"/> | |
158 <data format="html" label="${tool.name} on ${on_string}: accuracyresults.qzv" name="oaccuracyresults"/> | |
159 </outputs> | |
160 <help><![CDATA[ | |
161 Train and test a cross-validated supervised learning classifier. | |
162 ################################################################ | |
163 | |
164 Predicts a categorical sample metadata column using a supervised learning | |
165 classifier. Splits input data into training and test sets. The training set | |
166 is used to train and test the estimator using a stratified k-fold cross- | |
167 validation scheme. This includes optional steps for automated feature | |
168 extraction and hyperparameter optimization. The test set validates | |
169 classification accuracy of the optimized estimator. Outputs classification | |
170 results for test set. For more details on the learning algorithm, see | |
171 http://scikit-learn.org/stable/supervised_learning.html | |
172 | |
173 Parameters | |
174 ---------- | |
175 table : FeatureTable[Frequency] | |
176 Feature table containing all features that should be used for target | |
177 prediction. | |
178 metadata : MetadataColumn[Categorical] | |
179 Categorical metadata column to use as prediction target. | |
180 test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
181 Fraction of input samples to exclude from training set and use for | |
182 classifier testing. | |
183 step : Float % Range(0.0, 1.0, inclusive_start=False), optional | |
184 If optimize_feature_selection is True, step is the percentage of | |
185 features to remove at each iteration. | |
186 cv : Int % Range(1, None), optional | |
187 Number of k-fold cross-validations to perform. | |
188 random_state : Int, optional | |
189 Seed used by random number generator. | |
190 n_estimators : Int % Range(1, None), optional | |
191 Number of trees to grow for estimation. More trees will improve | |
192 predictive accuracy up to a threshold level, but will also increase | |
193 time and memory requirements. This parameter only affects ensemble | |
194 estimators, such as Random Forest, AdaBoost, ExtraTrees, and | |
195 GradientBoosting. | |
196 estimator : Str % Choices('RandomForestClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'AdaBoostClassifier', 'KNeighborsClassifier', 'LinearSVC', 'SVC'), optional | |
197 Estimator method to use for sample prediction. | |
198 optimize_feature_selection : Bool, optional | |
199 Automatically optimize input feature selection using recursive feature | |
200 elimination. | |
201 parameter_tuning : Bool, optional | |
202 Automatically tune hyperparameters using random grid search. | |
203 palette : Str % Choices('YellowOrangeBrown', 'YellowOrangeRed', 'OrangeRed', 'PurpleRed', 'RedPurple', 'BluePurple', 'GreenBlue', 'PurpleBlue', 'YellowGreen', 'summer', 'copper', 'viridis', 'plasma', 'inferno', 'magma', 'sirocco', 'drifting', 'melancholy', 'enigma', 'eros', 'spectre', 'ambition', 'mysteriousstains', 'daydream', 'solano', 'navarro', 'dandelions', 'deepblue', 'verve', 'greyscale'), optional | |
204 The color palette to use for plotting. | |
205 missing_samples : Str % Choices('error', 'ignore'), optional | |
206 How to handle missing samples in metadata. "error" will fail if missing | |
207 samples are detected. "ignore" will cause the feature table and | |
208 metadata to be filtered, so that only samples found in both files are | |
209 retained. | |
210 | |
211 Returns | |
212 ------- | |
213 sample_estimator : SampleEstimator[Classifier] | |
214 Trained sample estimator. | |
215 feature_importance : FeatureData[Importance] | |
216 Importance of each input feature to model accuracy. | |
217 predictions : SampleData[ClassifierPredictions] | |
218 Predicted target values for each input sample. | |
219 model_summary : Visualization | |
220 Summarized parameter and (if enabled) feature selection information for | |
221 the trained estimator. | |
222 accuracy_results : Visualization | |
223 Accuracy results visualization. | |
224 ]]></help> | |
225 <macros> | |
226 <import>qiime_citation.xml</import> | |
227 </macros> | |
228 <expand macro="qiime_citation"/> | |
229 </tool> |