Mercurial > repos > florianbegusch > qiime2_wrappers
diff qiime2/qiime_sample-classifier_classify-samples.xml @ 0:51b9b6b57732 draft
Uploaded
author | florianbegusch |
---|---|
date | Thu, 24 May 2018 05:21:07 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/qiime2/qiime_sample-classifier_classify-samples.xml Thu May 24 05:21:07 2018 -0400 @@ -0,0 +1,205 @@ +<?xml version="1.0" ?> +<tool id="qiime_sample-classifier_classify-samples" name="qiime sample-classifier classify-samples" version="2018.4"> + <description> - Supervised learning classifier.</description> + <requirements> + <requirement type="package" version="2018.4">qiime2</requirement> + </requirements> + <command> + <![CDATA[ + qiime sample-classifier classify-samples --i-table=$itable + + #def list_dict_to_string(list_dict): + #set $file_list = list_dict[0]['additional_input'].__getattr__('file_name') + #for d in list_dict[1:]: + #set $file_list = $file_list + ' --m-metadata-file=' + d['additional_input'].__getattr__('file_name') + #end for + #return $file_list + #end def + + --m-metadata-file=$list_dict_to_string($input_files_mmetadatafile) --m-metadata-column="$mmetadatacolumn" + #if $pstep: + --p-step=$pstep + #end if + + #if $poptimizefeatureselection: + --p-optimize-feature-selection + #else + --p-no-optimize-feature-selection + #end if + + #if $ptestsize: + --p-test-size=$ptestsize + #end if + + #if str($cmdconfig) != 'None': + --cmd-config=$cmdconfig + #end if + --o-visualization=ovisualization + #if str($pestimator) != 'None': + --p-estimator=$pestimator + #end if + + #if $pnestimators: + --p-n-estimators=$pnestimators + #end if + + #set $pnjobs = '${GALAXY_SLOTS:-4}' + + #if str($pnjobs): + --p-n-jobs="$pnjobs" + #end if + + + #if $pcv: + --p-cv=$pcv + #end if + + #if str($ppalette) != 'None': + --p-palette=$ppalette + #end if + + #if $pparametertuning: + --p-parameter-tuning + #else + --p-no-parameter-tuning + #end if + + #if str($prandomstate): + --p-random-state="$prandomstate" + #end if + ; + qiime tools export ovisualization.qzv --output-dir out && mkdir -p '$ovisualization.files_path' + && cp -r out/* '$ovisualization.files_path' + && mv '$ovisualization.files_path/index.html' '$ovisualization' + ]]> + </command> + <inputs> + <param format="qza,no_unzip.zip" label="--i-table: FeatureTable[Frequency] Feature table containing all features that should be used for target prediction. [required]" name="itable" optional="False" type="data"/> + + <repeat name="input_files_mmetadatafile" optional="False" title="--m-metadata-file"> + <param label="--m-metadata-file: Metadata file or artifact viewable as metadata. This option may be supplied multiple times to merge metadata. [required]" name="additional_input" type="data" format="tabular,qza,no_unzip.zip" /> + </repeat> + <param label="--m-metadata-column: MetadataColumn[Categorical] Column from metadata file or artifact viewable as metadata. Categorical metadata column to use as prediction target. [required]" name="mmetadatacolumn" optional="False" type="text"/> + + <param label="--p-test-size: Fraction of input samples to exclude from training set and use for classifier testing. [default: 0.2]" name="ptestsize" optional="True" type="float" value="0.2"/> + <param label="--p-step: If optimize_feature_selection is True, step is the percentage of features to remove at each iteration. [default: 0.05]" name="pstep" optional="True" type="float" value="0.05"/> + <param label="--p-cv: Number of k-fold cross-validations to perform. [default: 5]" name="pcv" optional="True" type="integer" value="5"/> + + <param label="--p-random-state: Seed used by random number generator. [optional]" name="prandomstate" optional="True" type="text"/> + + <param label="--p-n-estimators: Number of trees to grow for estimation. More trees will improve predictive accuracy up to a threshold level, but will also increase time and memory requirements. This parameter only affects ensemble estimators, such as Random Forest, AdaBoost, ExtraTrees, and GradientBoosting. [default: 100]" name="pnestimators" optional="True" type="integer" value="100"/> + <param label="--p-estimator: Estimator method to use for sample + prediction. [default: + RandomForestClassifier]" name="pestimator" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="LinearSVC">LinearSVC</option> + <option value="RandomForestClassifier">RandomForestClassifier</option> + <option value="SVC">SVC</option> + <option value="AdaBoostClassifier">AdaBoostClassifier</option> + <option value="GradientBoostingClassifier">GradientBoostingClassifier</option> + <option value="ExtraTreesClassifier">ExtraTreesClassifier</option> + <option value="KNeighborsClassifier">KNeighborsClassifier</option> + </param> + + <param label="--p-optimize-feature-selection: --p-no-optimize-feature-selection Automatically optimize input feature selection using recursive feature elimination. [default: False]" name="poptimizefeatureselection" checked="False" type="boolean"/> + + <param label="--p-parameter-tuning: --p-no-parameter-tuning Automatically tune hyperparameters using random grid search. [default: False]" name="pparametertuning" checked="False" type="boolean"/> + + <param label="--p-palette: The color palette to use for plotting. + [default: sirocco]" name="ppalette" optional="True" type="select"> + <option selected="True" value="None">Selection is Optional</option> + <option value="plasma">plasma</option> + <option value="inferno">inferno</option> + <option value="BluePurple">BluePurple</option> + <option value="summer">summer</option> + <option value="magma">magma</option> + <option value="drifting">drifting</option> + <option value="sirocco">sirocco</option> + <option value="enigma">enigma</option> + <option value="YellowOrangeRed">YellowOrangeRed</option> + <option value="GreenBlue">GreenBlue</option> + <option value="deepblue">deepblue</option> + <option value="ambition">ambition</option> + <option value="melancholy">melancholy</option> + <option value="PurpleRed">PurpleRed</option> + <option value="greyscale">greyscale</option> + <option value="dandelions">dandelions</option> + <option value="YellowOrangeBrown">YellowOrangeBrown</option> + <option value="verve">verve</option> + <option value="viridis">viridis</option> + <option value="OrangeRed">OrangeRed</option> + <option value="mysteriousstains">mysteriousstains</option> + <option value="spectre">spectre</option> + <option value="solano">solano</option> + <option value="daydream">daydream</option> + <option value="eros">eros</option> + <option value="RedPurple">RedPurple</option> + <option value="PurpleBlue">PurpleBlue</option> + <option value="YellowGreen">YellowGreen</option> + <option value="copper">copper</option> + <option value="navarro">navarro</option> + </param> + + <param label="--cmd-config: Use config file for command options" name="cmdconfig" optional="True" type="data"/> + </inputs> + <outputs> + <data format="html" label="${tool.name} on ${on_string}: visualization.qzv" name="ovisualization"/> + </outputs> + <help> + <![CDATA[ +Supervised learning classifier. +-------------------------------- + +Predicts a categorical sample metadata column using a supervised learning +classifier. Splits input data into training and test sets. The training set +is used to train and test the estimator using a stratified k-fold cross- +validation scheme. This includes optional steps for automated feature +extraction and hyperparameter optimization. The test set validates +classification accuracy of the optimized estimator. Outputs classification +results for test set. For more details on the learning algorithm, see +http://scikit-learn.org/stable/supervised_learning.html + +Parameters +---------- +table : FeatureTable[Frequency] + Feature table containing all features that should be used for target + prediction. +metadata : MetadataColumn[Categorical] + Categorical metadata column to use as prediction target. +test_size : Float % Range(0.0, 1.0, inclusive_start=False), optional + Fraction of input samples to exclude from training set and use for + classifier testing. +step : Float % Range(0.0, 1.0, inclusive_start=False), optional + If optimize_feature_selection is True, step is the percentage of + features to remove at each iteration. +cv : Int % Range(1, None), optional + Number of k-fold cross-validations to perform. +random_state : Int, optional + Seed used by random number generator. +n_estimators : Int % Range(1, None), optional + Number of trees to grow for estimation. More trees will improve + predictive accuracy up to a threshold level, but will also increase + time and memory requirements. This parameter only affects ensemble + estimators, such as Random Forest, AdaBoost, ExtraTrees, and + GradientBoosting. +estimator : Str % Choices({'AdaBoostClassifier', 'ExtraTreesClassifier', 'GradientBoostingClassifier', 'KNeighborsClassifier', 'LinearSVC', 'RandomForestClassifier', 'SVC'}), optional + Estimator method to use for sample prediction. +optimize_feature_selection : Bool, optional + Automatically optimize input feature selection using recursive feature + elimination. +parameter_tuning : Bool, optional + Automatically tune hyperparameters using random grid search. +palette : Str % Choices({'BluePurple', 'GreenBlue', 'OrangeRed', 'PurpleBlue', 'PurpleRed', 'RedPurple', 'YellowGreen', 'YellowOrangeBrown', 'YellowOrangeRed', 'ambition', 'copper', 'dandelions', 'daydream', 'deepblue', 'drifting', 'enigma', 'eros', 'greyscale', 'inferno', 'magma', 'melancholy', 'mysteriousstains', 'navarro', 'plasma', 'sirocco', 'solano', 'spectre', 'summer', 'verve', 'viridis'}), optional + The color palette to use for plotting. + +Returns +------- +visualization : Visualization + \ + ]]> + </help> +<macros> + <import>qiime_citation.xml</import> +</macros> +<expand macro="qiime_citation" /> +</tool>