Mercurial > repos > fxce > vdm_plot
changeset 2:472ea11c2b25 draft
Uploaded
author | fxce |
---|---|
date | Mon, 16 Nov 2020 13:59:36 +0000 |
parents | 3c964e22b6bc |
children | 44e4f5bfebde |
files | my_VDM_tool.R |
diffstat | 1 files changed, 523 insertions(+), 0 deletions(-) [+] |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/my_VDM_tool.R Mon Nov 16 13:59:36 2020 +0000 @@ -0,0 +1,523 @@ +#!/usr/bin/env Rscript +# rm(list=ls()) + +#Rscript my_VDM_tool.R --inf "nor22.vcf" --itype "C.elegans" --qual 200 --allr "AB" --snp TRUE --lsp 0.4 --pcol "black" --lcol "red" --xstand TRUE --bsize 1000000 --freqthr 0.0-1.0 --bnorm FALSE --exclf "FALSE" --exclcol "green" --outn "test-output.txt" --pdfn "test-plot.pdf" + +library("getopt") +#input from trailing line arguments +args <- commandArgs(trailingOnly = TRUE) +#read the options from input commandArgs +option_specification = matrix(c( + 'inf','in',1,'character', + 'itype','i',2,'character', + 'qual','q',2,'double', + 'allr','a',2,'character', + 'snp','s',2,'logical', + 'lsp','l',2,'double', + 'pcol','pc',2,'character', + 'lcol','lc',2,'character', + 'xstand','x',2,'logical', + 'bsize','b',2,'integer', + 'freqthr','ft',2,'character', + 'bnorm','n',2,'logical', + 'exclf','ef',2,'character', + 'exclcol','ec',2,'character', + 'outn','o',2,'character', + 'pdfn','p',2,'character' +), byrow=TRUE, ncol=4) +options = getopt(option_specification) + +myfunction<-function(inf,itype,qual,allr,snp,lsp,pcol,lcol,xstand,bsize,freqthr,bnorm,exclf,exclcol,outn,pdfn){ + #input file + filename<-inf + #choose species for chrom config + interval_type<-itype + #quality filter + read_qual<-as.numeric(qual) + #allele ratio from AB or AO/(AO+RO) + allele_ratio<-allr + #snp only or include all variant types + snp_only<-snp + #loess span + loess_span<-as.numeric(lsp) + #scatterplot point colour + plot_color<-pcol + #loess curve colour + loess_color<-lcol + #uniform y-axis scaling + xaxis_standard<-xstand + #binsize + bin_size<-as.numeric(bsize) + + #allele ratio greater or equal to this value considered hom ALT + threshold_upper<-as.numeric(gsub(".*-","",freqthr)) + #allele ratio less than or equal to this value considered hom REF + threshold_lower<-as.numeric(gsub("-.*","",freqthr)) + + #normalize frequency barplot + bfreq_norm<-bnorm + #filenames for variant subtraction + exclusion_list<-exclf + #pre-subtraction loess curve colour + excl_loess_color<-exclcol + #filename for ouput table + vcfoutput_filename<-outn + #filename for pdf + pdf_filename<-pdfn + + #transparency for selected colour (to see plot points underneath) + plot_color<-rgb(c(col2rgb(plot_color)[1]),c(col2rgb(plot_color)[2]),c(col2rgb(plot_color)[3]),max=255,alpha=150) + loess_color<-rgb(c(col2rgb(loess_color)[1]),c(col2rgb(loess_color)[2]),c(col2rgb(loess_color)[3]),max=255,alpha=150) + excl_loess_color<-rgb(c(col2rgb(excl_loess_color)[1]),c(col2rgb(excl_loess_color)[2]),c(col2rgb(excl_loess_color)[3]),max=255,alpha=150) + + ###FIXED PARAMETERS + #chromosome intervals in Mb rather than custom + interval_unit<-1000000 + #linkage scatter plot yaxis max value=1 + sp_yaxis<-1 + + #only use variants with allele ratio in this range for subtraction (dependent on AB/ratio option) + excl_rthreshold_upper<-1 + excl_rthreshold_lower<-0 + #filename for parsed original vcf + vcfparsed_filename<-"parsed.txt" + + fastmode<-"TRUE" + +###################### +###READ IN VCF FILE +#extract column names +vcf_readin<-readLines(filename) +#find header line, i.e. last line to begin with # +for(l in 1:length(vcf_readin)){ + vcf_readinl<-vcf_readin[l] + if(substr(vcf_readinl,1,1)=="#"){next} + else if(substr(vcf_readinl,1,1)!="#"){rowline<-l-1;break} +} +vcf_header<-vcf_readin[rowline] +#e.g. CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\trgSM" +vcf_header<-gsub("#","",vcf_header) +vcf_colnames<-unlist(strsplit(vcf_header,"\t")) + +#extract data (hashed vcf header skipped with read.table) +vcf_rtable<-read.table(filename,sep="\t",stringsAsFactors=FALSE) +names(vcf_rtable)<-vcf_colnames + +if(fastmode=="TRUE"){ + #to speed up runtime- quality filter here ny skipping parsing of full vcf (parsed output file incomplete) + vcf_rtable<-subset(vcf_rtable,QUAL>=read_qual) +} + + +###################### +###PREPARE DATA +vcfinfo_dat<-NULL +multiallele_counter<-0 +diviserror_counter<-0 +for(i in c(1:nrow(vcf_rtable))){ + vcf_line<-vcf_rtable[i,] + #remove chrom or chr prefix from chromosome value + if(grepl("chrom",vcf_line$CHROM,ignore.case=TRUE)==TRUE){ + vcf_line$CHROM<-gsub("chrom","",vcf_line$CHROM,ignore.case=TRUE) + }else if(grepl("chr",vcf_line$CHROM,ignore.case=TRUE)==TRUE){ + vcf_line$CHROM<-gsub("chr","",vcf_line$CHROM,ignore.case=TRUE) + } +#PARSE INFO + vcfinfo_split<-strsplit(vcf_line$INFO,split=";") + vcfinfo_coln<-gsub("=.*","",unlist(vcfinfo_split)) + vcfinfo_cold<-gsub(".*=","",unlist(vcfinfo_split)) + vcfinfo_ldat<-data.frame(t(vcfinfo_cold),stringsAsFactors=FALSE) + names(vcfinfo_ldat)<-vcfinfo_coln + + #skip if commas in values to avoid returning errors + if(grepl(",",vcfinfo_ldat$AO)==TRUE){ + multiallele_counter<-multiallele_counter+1 + next + } + #skip divide by zero errors (under "ratio" setting for ratio calculation) + if(as.numeric(vcfinfo_ldat$AO)+as.numeric(vcfinfo_ldat$RO)=="0"){ + diviserror_counter<-diviserror_counter+1 + next + } + + #specific accounting for nonstandard categories + #LOF columns only present for loss-of-function variants + assign NA values to all other variants + if(("LOF" %in% names(vcfinfo_ldat))==TRUE){ + LOF<-vcfinfo_ldat$LOF + vcfinfo_ldat<-vcfinfo_ldat[,!names(vcfinfo_ldat) %in% "LOF"] + vcfinfo_ldat<-cbind(vcfinfo_ldat,LOF) + }else{ + LOF<-"NA" + vcfinfo_ldat<-cbind(vcfinfo_ldat,LOF) + } + #NMD columns only present for nonsense-mediated-decay variants + assign NA values to all other variants + if(("NMD" %in% names(vcfinfo_ldat))==TRUE){ + NMD<-vcfinfo_ldat$NMD + vcfinfo_ldat<-vcfinfo_ldat[,!names(vcfinfo_ldat) %in% "NMD"] + vcfinfo_ldat<-cbind(vcfinfo_ldat,NMD) + }else{ + NMD<-"NA" + vcfinfo_ldat<-cbind(vcfinfo_ldat,NMD) + } +#PARSE ANNOTATION + ann_rparsed<-unlist(strsplit(vcfinfo_ldat$ANN[1],split="\\|"))[1:20] + ann_rparsed[ann_rparsed==""]<-"novalue" + ann_parsed<-data.frame(t(ann_rparsed),stringsAsFactors=FALSE) + names(ann_parsed)<-paste("ANN",c(1:dim(ann_parsed)[2]),sep="") + #remove duplicate redundant INFO column (fully parsed) + vcf_line<-vcf_line[,names(vcf_line)!="INFO"] + + #dataset keeping parsed annotation (partial parsed-for relevant) + vcfinfo_ldat<-vcfinfo_ldat[,names(vcfinfo_ldat)!="ANN"] + #append copy of original data to parsed data + vcfinfo_lldat<-cbind(vcf_line,vcfinfo_ldat,ann_parsed) + vcfinfo_dat<-rbind(vcfinfo_dat,vcfinfo_lldat) + +} + +print(paste("rows with multiple alleles skipped: ",multiallele_counter,sep="")) +# print(paste("rows with AO+RO=0 (not multiple alleles) skipped: ",diviserror_counter,sep="")) + +#ENSURE CORRECT DATATYPES +#convert dataframe columns of factor type to character type +vcfinfo_dat<-data.frame(lapply(vcfinfo_dat,as.character),stringsAsFactors=FALSE) +#convert to numeric if column is numeric and not string +for(n in c(1:dim(vcfinfo_dat)[2])){ + #suppress warnings when columns with strings encountered (not converted) + suppressWarnings( + colnum_index<-!is.na(as.numeric(vcfinfo_dat[,n])) + ) + if(all(colnum_index)==TRUE){ + vcfinfo_dat[,n]<-as.numeric(vcfinfo_dat[,n]) + } +} + + +###################### +#RATIO CALCULATION +#ratio calculation from AO and RO +RATIO<-c(vcfinfo_dat$AO/(vcfinfo_dat$AO+vcfinfo_dat$RO)) +#add adj_AB for AB=0->AO=1 conversion +adj_AB<-replace(vcfinfo_dat$AB,vcfinfo_dat$AB==0,1) +vcfinfo_dat<-cbind(vcfinfo_dat,RATIO,adj_AB) +vcfinfo_dat<-vcfinfo_dat[with(vcfinfo_dat,order(CHROM,POS)),] + +vcfinfo_pdat<-vcfinfo_dat +vcfinfo_dat<-subset(vcfinfo_dat,QUAL>=read_qual) + +#CONSIDER ONLY SNP VARIANTS +if(snp_only==TRUE){ + vcfinfo_dat<-subset(vcfinfo_dat,CIGAR=="1X") +} + +###################### +#SUBTRACT VARIANTS FROM EXCLUSION LIST +if(exclusion_list!="FALSE"){ + #keep copy of pre-subtraction data for later plotting + vcfinfo_origdat<-vcfinfo_dat + + #identifiers for exclusion list based on CHROM/POS/REF/ALT + index1<-paste(vcfinfo_dat$CHROM,vcfinfo_dat$POS,sep="_") + index2<-paste(vcfinfo_dat$CHROM,vcfinfo_dat$POS,vcfinfo_dat$REF,sep="_") + index3<-paste(vcfinfo_dat$CHROM,vcfinfo_dat$POS,vcfinfo_dat$REF,vcfinfo_dat$ALT,sep="_") + vcfinfo_dat<-cbind(vcfinfo_dat,index1,index2,index3) + + print(paste("before subtraction: ",nrow(vcfinfo_dat),sep="")) + #loop and subtract through exclusion lists (if multiple files) + for(exclusion_ind in exclusion_list){ + exclin<-read.table(exclusion_ind,header=TRUE) + + #THRESHOLD FILTER ON EXCLUSION LIST VARIANTS + if(allele_ratio=="AB"){ + exclin<-subset(exclin,adj_AB>=excl_rthreshold_lower) + exclin<-subset(exclin,adj_AB<=excl_rthreshold_upper) + } + if(allele_ratio=="ratio"){ + exclin<-subset(exclin,ratio>=excl_rthreshold_lower) + exclin<-subset(exclin,ratio>=excl_rthreshold_upper) + } + + #identifiers for vcf data based on CHROM/POS/REF/ALT + index1<-paste(exclin$CHROM,exclin$POS,sep="_") + index2<-paste(exclin$CHROM,exclin$POS,exclin$REF,sep="_") + index3<-paste(exclin$CHROM,exclin$POS,exclin$REF,exclin$ALT,sep="_") + exclin<-cbind(exclin,index1,index2,index3) + #exclude based on CHROM+POS+REF+ALT + vcfinfo_dat<-subset(vcfinfo_dat,!(index3 %in% exclin$index3)) + } + print(paste("after subtraction: ",nrow(vcfinfo_dat),sep="")) +} + + +###################### +#WRITE TO OUTPUT +#select relevant columns 2 variant type; 4 gene; !5 wormbase ID; 8 type change; 10 nucleotide change; 11 amino acid change; 16 warning message +vcfinfo_simp<-subset(vcfinfo_dat,select=c("CHROM","POS","QUAL","DP","REF","ALT","AB","AO","RO","RATIO","adj_AB","ANN2","ANN4","ANN8","ANN10","ANN11","ANN16")) +names(vcfinfo_simp)<-c("CHROM","POS","QUAL","DP","REF","ALT","AB","AO","RO","RATIO","adj_AB","VARTYPE","GENE","TYPE","NTCHANGE","PRCHANGE","WARNINGS") +vcfsimp_dat<-vcfinfo_simp[with(vcfinfo_simp,order(CHROM,POS)),] + +#write table with quality filtered variants for VDM plotting and relevant columns +try( + write.table(vcfsimp_dat,vcfoutput_filename,sep="\t",quote=FALSE,row.names=FALSE) + ,silent=TRUE) +# #write table with all unfiltered variants and all columns including parsed INFO +# if(fastmode!="TRUE"){} +# try( +# write.table(vcfinfo_pdat,vcfparsed_filename,sep="\t",quote=FALSE,row.names=FALSE) +# ,silent=TRUE) +# } + +###################### +###CHROMOSOME (INTERVAL) ARRANGEMENT +#define chromosome and chromosome size in Mb +if(interval_type == 'C.elegans'){ + chrom_n<-c('I','II','III','IV','V','X') + chrom_mb<-c(16,16,14,18,21,18) + interval_frame<-data.frame(chrom_n,chrom_mb) +} else if(interval_type == 'Zebrafish'){ + chrom_n<-c('1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21','22','23','24','25') + chrom_mb<-c(61,61,64,63,76,60,78,57,59,47,47,51,55,54,48,59,54,50,51,56,45,43,47,44,39) + interval_frame<-data.frame(chrom_n,chrom_mb) +} else if(interval_type == 'Brachypodium'){ + chrom_n<-c('1','2','3','4','5') + chrom_mb<-c(75,60,60,50,30) + interval_frame<-data.frame(chrom_n,chrom_mb) +} else if(interval_type == 'Arabidopsis'){ + chrom_n<-c('1','2','3','4','5') + chrom_mb<-c(31, 20,24,19,27 ) + interval_frame<-data.frame(chrom_n,chrom_mb) +} else{ + #user interval file- no headers, with chromosome in column 1 (format CHR# or CHROM#) and size in Mb (rounded up) in column 2 + user_interval_type<-read.table(interval_type) + if(grepl("chrom",user_interval_type[1,1],ignore.case=TRUE)==TRUE){ + user_interval_type[,1]<-gsub("chrom","",user_interval_type[,1],ignore.case=TRUE) + }else if(grep("chr",user_interval_type[1,1],ignore.case=TRUE)==TRUE){ + user_interval_type[,1]<-gsub("chr","",user_interval_type[,1],ignore.case=TRUE) + } + chrom_n<-user_interval_type[,1] + chrom_mb<-user_interval_type[,2] + interval_frame<-data.frame(chrom_n,chrom_mb) +} +names(interval_frame)<-c("CHROM","INTERVAL") + + +###################### +###PLOTTING +#VDM SCATTER PLOT +#save to pdf +pdf(file=pdf_filename,width=9,height=8) +#par(mfrow=c(2,3)) +for(chromind in interval_frame$CHROM){ + #subset by data by chromosome for plotting + intervalind<-interval_frame$INTERVAL[interval_frame$CHROM==chromind] + chr_dat<-subset(vcfsimp_dat,CHROM==chromind,silent=TRUE) + + #same subsetting by chromosome for pre-subtraction data + if(exclusion_list!="FALSE"){ + chr_origdat<-subset(vcfinfo_origdat,CHROM==chromind,silent=TRUE) + } + + #define x-axis upper limit + if(xaxis_standard==TRUE){ + #for standardized x-axis (max x-axis chromosome length) + scupper_xaxis<-max(interval_frame$INTERVAL) + scupper_xval<-scupper_xaxis*interval_unit + } else if(xaxis_standard==FALSE){ + scupper_xaxis<-intervalind + scupper_xval<-intervalind*interval_unit + } + + if(allele_ratio=="AB"){ + plot(chr_dat$POS,chr_dat$adj_AB,cex=0.60,xlim=c(0,scupper_xval),ylim=c(0,sp_yaxis),main=paste("Chr",chromind," Variant Discovery Mapping",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Ratio of Variant Reads/Total Reads [AB]',pch=10, col=plot_color,xaxt='n') + try(lines(loess.smooth(chr_dat$POS,chr_dat$adj_AB,span=loess_span),lwd=5,col=loess_color)) + #plot loess curve for data without subtraction of exclusion variants + if(exclusion_list!="FALSE"){ + try(lines(loess.smooth(chr_origdat$POS,chr_origdat$adj_AB,span=loess_span),lty="longdash",lwd=4,col=excl_loess_color)) + } + + axis(1,at=seq(0,scupper_xval,by=interval_unit),labels=c(0:scupper_xaxis)) + abline(h=seq(0,sp_yaxis,by=0.1),v=c(1:scupper_xaxis)*interval_unit,col="gray") + } else if(allele_ratio=="ratio"){ + plot(chr_dat$POS,chr_dat$RATIO,cex=0.60,xlim=c(0,scupper_xval),ylim=c(0,sp_yaxis),main=paste("Chr",chromind," Variant Discovery Mapping",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Ratio of Variant Reads/Total Reads [ratio]',pch=10, col=plot_color,xaxt='n') + try(lines(loess.smooth(chr_dat$POS,chr_dat$RATIO,span=loess_span),lwd=5,col=loess_color)) + #plot loess curve for data without subtraction of exclusion variants + if(exclusion_list!="FALSE"){ + try(lines(loess.smooth(chr_origdat$POS,chr_origdat$adj_AB,span=loess_span),lty="longdash",lwd=4,col=excl_loess_color)) + } + axis(1,at=seq(0,scupper_xval,by=interval_unit),labels=c(0:scupper_xaxis)) + abline(h=seq(0,sp_yaxis,by=0.1),v=c(1:scupper_xaxis)*interval_unit,col="gray") + } +} + + +###################### +#graph barplots +location_index<-NULL +meanSNP_dat<-NULL +# prepare table of counts and calculations +for(chromind in interval_frame$CHROM){ + #for standardized x-axis + if(xaxis_standard==TRUE){ + intervalind<-max(interval_frame$INTERVAL)*1000000/bin_size + } else if(xaxis_standard==FALSE){ + intervalind<-interval_frame$INTERVAL[interval_frame$CHROM==chromind]*1000000/bin_size + } + #start intervals with **1 and end with **0 + interval_begin<-c(((0:(intervalind-1))*bin_size)+1) + interval_end<-c((1:intervalind)*bin_size) + + #define x-axis upper limit + if(xaxis_standard==TRUE){ + upper_xaxis<-max(interval_frame$INTERVAL) + } else if(xaxis_standard==FALSE){ + upper_xaxis<-interval_frame$INTERVAL[interval_frame$CHROM==chromind] + } + #prepare columns + snp_counter<-0 + purealt_counter<-0 + pureref_counter<-0 + het_counter<-0 + chr_mean<-0 + normed_freq<-0 + ratio<-0 + + interval_index<-data.frame(chromind,interval_begin,interval_end,snp_counter,purealt_counter,pureref_counter,het_counter,chr_mean,normed_freq) + chr_dat<-subset(vcfinfo_dat,CHROM==chromind) + #ratio calculation + ratio<-chr_dat$AO/(chr_dat$AO+chr_dat$RO) + + #if counter based on adj_AB or ratio + if(allele_ratio=="ratio"){ + chr_purealtdat<-subset(chr_dat,ratio>=threshold_upper) + chr_purerefdat<-subset(chr_dat,ratio<=threshold_lower) + chr_hetdat<-subset(chr_dat,ratio>threshold_lower & ratio<threshold_upper) + } else if(allele_ratio=="AB"){ + chr_purealtdat<-subset(chr_dat,adj_AB>=threshold_upper) + chr_purerefdat<-subset(chr_dat,adj_AB<=threshold_lower) + chr_hetdat<-subset(chr_dat,adj_AB>threshold_lower & adj_AB<threshold_upper) + } + #if chromosome with data, count number of snps within each bin (positions rounded up to nearest bin), else skip to next chromosome + if(dim(chr_dat)[1]>0){ + for(i in 1:dim(chr_dat)[1]){ + chr_datind<-chr_dat[i,] + #round up to nearest bin-size interval + chr_datind_upper<-ceiling(chr_datind$POS/bin_size)*bin_size + interval_coln<-NULL;interval_rown<-NULL + #identify row and and counter column to increment + interval_coln<-which(names(interval_index)=="snp_counter") + interval_rown<-match(chr_datind_upper,interval_index$interval_end) + interval_index[interval_rown,interval_coln]<-c(interval_index$snp_counter[interval_rown]+1) + } + }else{ + next + } + #if chromosome with pure AO, count number of snps with each bin (positions rounded up to nearest bin) + if(dim(chr_purealtdat)[1]>0){ + for(i in 1:dim(chr_purealtdat)[1]){ + chr_purealtind<-chr_purealtdat[i,] + chr_purealtind_upper<-ceiling(chr_purealtind$POS/bin_size)*bin_size + interval_coln<-NULL;interval_rown<-NULL + interval_coln<-which(names(interval_index)=="purealt_counter") + interval_rown<-match(chr_purealtind_upper,interval_index$interval_end) + interval_index[interval_rown,interval_coln]<-c(interval_index$purealt_counter[interval_rown]+1) + } + } + #if chromosome with pure RO, count number of snps with each bin (positions rounded up to nearest bin) + if(dim(chr_purerefdat)[1]>0){ + for(i in 1:dim(chr_purerefdat)[1]){ + chr_purerefind<-chr_purerefdat[i,] + chr_purerefind_upper<-ceiling(chr_purerefind$POS/bin_size)*bin_size + interval_coln<-NULL;interval_rown<-NULL + interval_coln<-which(names(interval_index)=="pureref_counter") + interval_rown<-match(chr_purerefind_upper,interval_index$interval_end) + interval_index[interval_rown,interval_coln]<-c(interval_index$pureref_counter[interval_rown]+1) + } + } + #if chromosome with hets, count number of snps with each bin (positions rounded up to nearest bin) + if(dim(chr_hetdat)[1]>0){ + for(i in 1:dim(chr_hetdat)[1]){ + chr_hetind<-chr_hetdat[i,] + chr_hetind_upper<-ceiling(chr_hetind$POS/bin_size)*bin_size + interval_coln<-NULL;interval_rown<-NULL + interval_coln<-which(names(interval_index)=="het_counter") + interval_rown<-match(chr_hetind_upper,interval_index$interval_end) + interval_index[interval_rown,interval_coln]<-c(interval_index$het_counter[interval_rown]+1) + } + } + #irrespective of standardized x-axis, mean should be calculated from actual interval range of chromosome + chr_mean<-sum(interval_index$purealt_counter)/(interval_frame$INTERVAL[interval_frame$CHROM==chromind]*1000000/bin_size) + interval_index$chr_mean<-chr_mean + meanSNP_dat<-rbind(meanSNP_dat,data.frame(chromind,chr_mean)) + #normalization treatment for if SNPs are AO=0, AO=total SNPs, or AO and RO in bin + for(i in 1:dim(interval_index)[1]){ + chr_intind<-interval_index[i,] + #hom definition based on specified upper and lower thresholds + if(chr_intind$purealt_counter<=threshold_lower){ + interval_coln<-NULL + interval_coln<-which(names(interval_index)=="normed_freq") + interval_index[i,interval_coln]=0 + } else if (chr_intind$purealt_counter==chr_intind$snp_counter){ + interval_coln<-NULL + interval_coln<-which(names(interval_index)=="normed_freq") + interval_index[i,interval_coln]=(chr_intind$purealt_counter)^2/chr_mean + } else { + interval_coln<-NULL + interval_coln<-which(names(interval_index)=="normed_freq") + interval_index[i,interval_coln]=chr_mean*(chr_intind$purealt_counter)^2/(chr_intind$snp_counter-chr_intind$purealt_counter) + } + } + location_index<-rbind(location_index,interval_index) +} + +for(chromind in interval_frame$CHROM){ + interval_index<-location_index[location_index$chromind==chromind,] + #assign 0 values to avoid empty datatable error + if(dim(interval_index)[1]==0){ + interval_index[1,]<-rep(0,dim(interval_index)[2]) + } + #set up x_axis + if(xaxis_standard==TRUE){ + #for standardized x-axis (max x-axis chromosome length) + bpupper_xaxis<-max(interval_frame$INTERVAL) + bpupper_xval<-bpupper_xaxis*interval_unit + }else if(xaxis_standard==FALSE){ + bpupper_xaxis<-intervalind + bpupper_xval<-intervalind*interval_unit + } + #set up y_axis range for barplots + if(bfreq_norm==TRUE){ + bp_yaxis<-5*ceiling(max(location_index$normed_freq)/5) + #assign non-0 value to yaxis to avoid error + if(bp_yaxis==0){ + bp_yaxis<-10 + } + if(xaxis_standard==TRUE){ + bplot<-barplot(interval_index$normed_freq,space=0,ylim=c(0,bp_yaxis),main=paste("Chr",chromind," Variant Only",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Normalised Frequency') + }else if(xaxis_standard==FALSE){ + bplot<-barplot(interval_index$normed_freq,space=0,xlim=c(0,bpupper_xaxis),ylim=c(0,bp_yaxis),main=paste("Chr",chromind," Variant Only",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Normalised Frequency') + } + + }else if(bfreq_norm==FALSE){ + bp_yaxis<-5*ceiling(max(location_index$purealt_counter)/5) + #assign non-0 value to yaxis to avoid error + if(bp_yaxis==0){ + bp_yaxis<-10 + } + if(xaxis_standard==TRUE){ + bplot<-barplot(interval_index$purealt_counter,space=0,ylim=c(0,bp_yaxis),main=paste("Chr",chromind," Variant Only",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Frequency') + }else if(xaxis_standard==FALSE){ + bplot<-barplot(interval_index$purealt_counter,space=0,xlim=c(0,bpupper_xaxis),ylim=c(0,bp_yaxis),main=paste("Chr",chromind," Variant Only",sep=""),xlab="Position along Chromosome (in Mb)",ylab='Frequency') + } + } + bp_xaxis1<-as.numeric(bplot) + bp_xaxis2<-c(bp_xaxis1,tail(bp_xaxis1,1)+bp_xaxis1[2]-bp_xaxis1[1]) + bp_xaxis<-bp_xaxis2-bp_xaxis1[1] + + axis(1,at=bp_xaxis,labels=seq(0,bpupper_xaxis,by=c(bin_size/1000000))) + } + dev.off() +} + +myfunction(inf=options$inf,itype=options$itype,qual=options$qual,allr=options$allr,snp=options$snp,lsp=options$lsp,pcol=options$pcol,lcol=options$lcol, + xstand=options$xstand,bsize=options$bsize,bnorm=options$bnorm,freqthr=options$freqthr,exclf=options$exclf,exclcol=options$exclcol,outn=options$outn,pdfn=options$pdfn) +