Mercurial > repos > galaxy-australia > alphafold2
diff docker/alphafold/run_alphafold_test.py @ 1:6c92e000d684 draft
"planemo upload for repository https://github.com/usegalaxy-au/galaxy-local-tools commit a510e97ebd604a5e30b1f16e5031f62074f23e86"
author | galaxy-australia |
---|---|
date | Tue, 01 Mar 2022 02:53:05 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/docker/alphafold/run_alphafold_test.py Tue Mar 01 02:53:05 2022 +0000 @@ -0,0 +1,101 @@ +# Copyright 2021 DeepMind Technologies Limited +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +"""Tests for run_alphafold.""" + +import os + +from absl.testing import absltest +from absl.testing import parameterized +import run_alphafold +import mock +import numpy as np +# Internal import (7716). + + +class RunAlphafoldTest(parameterized.TestCase): + + @parameterized.named_parameters( + ('relax', True), + ('no_relax', False), + ) + def test_end_to_end(self, do_relax): + + data_pipeline_mock = mock.Mock() + model_runner_mock = mock.Mock() + amber_relaxer_mock = mock.Mock() + + data_pipeline_mock.process.return_value = {} + model_runner_mock.process_features.return_value = { + 'aatype': np.zeros((12, 10), dtype=np.int32), + 'residue_index': np.tile(np.arange(10, dtype=np.int32)[None], (12, 1)), + } + model_runner_mock.predict.return_value = { + 'structure_module': { + 'final_atom_positions': np.zeros((10, 37, 3)), + 'final_atom_mask': np.ones((10, 37)), + }, + 'predicted_lddt': { + 'logits': np.ones((10, 50)), + }, + 'plddt': np.ones(10) * 42, + 'ranking_confidence': 90, + 'ptm': np.array(0.), + 'aligned_confidence_probs': np.zeros((10, 10, 50)), + 'predicted_aligned_error': np.zeros((10, 10)), + 'max_predicted_aligned_error': np.array(0.), + } + model_runner_mock.multimer_mode = False + amber_relaxer_mock.process.return_value = ('RELAXED', None, None) + + fasta_path = os.path.join(absltest.get_default_test_tmpdir(), + 'target.fasta') + with open(fasta_path, 'wt') as f: + f.write('>A\nAAAAAAAAAAAAA') + fasta_name = 'test' + + out_dir = absltest.get_default_test_tmpdir() + + run_alphafold.predict_structure( + fasta_path=fasta_path, + fasta_name=fasta_name, + output_dir_base=out_dir, + data_pipeline=data_pipeline_mock, + model_runners={'model1': model_runner_mock}, + amber_relaxer=amber_relaxer_mock if do_relax else None, + benchmark=False, + random_seed=0) + + base_output_files = os.listdir(out_dir) + self.assertIn('target.fasta', base_output_files) + self.assertIn('test', base_output_files) + + target_output_files = os.listdir(os.path.join(out_dir, 'test')) + expected_files = [ + 'features.pkl', 'msas', 'ranked_0.pdb', 'ranking_debug.json', + 'result_model1.pkl', 'timings.json', 'unrelaxed_model1.pdb', + ] + if do_relax: + expected_files.append('relaxed_model1.pdb') + self.assertCountEqual(expected_files, target_output_files) + + # Check that pLDDT is set in the B-factor column. + with open(os.path.join(out_dir, 'test', 'unrelaxed_model1.pdb')) as f: + for line in f: + if line.startswith('ATOM'): + self.assertEqual(line[61:66], '42.00') + + +if __name__ == '__main__': + absltest.main()