Mercurial > repos > galaxyp > bumbershoot
view idpqonvert.xml @ 4:144c40322aef draft
Uploaded
author | galaxyp |
---|---|
date | Fri, 21 Jun 2013 16:49:21 -0400 |
parents | 35cf23cd8c3d |
children | f3b9e324d49a |
line wrap: on
line source
<tool id="idpQonvert" name="idpQonvert" version="0.1.0"> <!-- TODO: Set defaults for weights correctly --> <description> Prepare identification results for IDPicker. </description> <command> #set $db_name = $input_database.display_name.replace(".fasta", "") + ".fasta" #set $input_name = $input.display_name #set $output_name = $input_name.split(".")[0] + ".idpDB" ln -s '$input' '${input_name}'; ln -s '$input_database' '${db_name}'; idpQonvert -DecoyPrefix '${decoy_prefix}' \ -WriteQonversionDetails true \ -ProteinDatabase '${db_name}' \ -MaxFDR $max_fdr \ -EmbedSpectrumScanTimes false \ -EmbedSpectrumSources false \ #if $scoring.override_scoring #set $score_info = [] #for $engine in ["myrimatch:mvh", "xcorr", "sequest:xcorr", "sequest:deltacn", "mascot:score", "x!tandem:expect", "x!tandem:hyperscore", "ms-gf:spacevalue"] #set $weight = $getVar("scoring." + $engine.replace(":", "_").replace("!","") + "_weight.value") #set $type = $getVar("scoring." + $engine.replace(":", "_").replace("!","") + "_type.value") #set $score_info = $score_info + [str($weight) + " " + $type + " " + $engine] #continue #end for #set $score_str = "; ".join($score_info) -ScoreInfo '$score_str' \ #end if #if $advanced_options.use_advanced_options -MaxImportFDR $advanced_options.max_import_fdr \ -MaxResultRank $advanced_options.max_result_rank \ -RerankMatches $advanced_options.rerank_matches \ -Gamma $advanced_options.gamma \ -Nu $advanced_options.nu \ -PolynomialDegree $advanced_options.polynomial_degree \ -TruePositiveThreshold $advanced_options.true_positive_threshold \ -MaxTrainingRank $advanced_options.max_training_rank \ -SVMType $advanced_options.svm_type \ -Kernel $advanced_options.kernel \ -ChargeStateHandling $advanced_options.charge_state_handling \ -QonverterMethod $advanced_options.qonverter_method \ -MinPartitionSize $advanced_options.min_partition_size \ #end if '${input_name}'; mv '$output_name' output </command> <!-- idpQonvert needs spectrum available EmbedSpectrumScanTimes or EmbedSpectrumSources is set. --> <stdio> <exit_code range="1:" level="fatal" description="Job Failed" /> <regex match="^Could not find the default configuration file.*$" source="both" level="warning" /> </stdio> <inputs> <conditional name="type"> <param name="input_type" type="select" label="Input Type"> <option value="mzid">mzIdentML</option> <option value="pepXML">pepXML</option> </param> <when value="mzid"> <param format="mzid" name="input" type="data" label="Input mzIdentML"/> </when> <when value="pepXML"> <param format="pepXML" name="input" type="data" label="Input pepXML"/> </when> </conditional> <param format="fasta" name="input_database" type="data" label="Protein Database"/> <param name="decoy_prefix" type="text" label="Decoy Prefix"/> <param name="max_fdr" type="float" label="Max FDR" value="0.05" /> <conditional name="advanced_options"> <param name="use_advanced_options" type="boolean" truevalue="true" falsevalue="false" label="Set Advanced Options" help="" /> <when value="false" /> <when value="true"> <param name="max_import_fdr" type="float" label="Max Import FDR" value="0.25" /> <param name="max_result_rank" type="integer" label="Max Result Rank" value="3" /> <param name="max_training_rank" type="integer" label="Max Training Rank" value="1" /> <param name="rerank_matches" type="boolean" label="Rerank Matches" checked="false" truevalue="true" falsevalue="false" /> <param name="gamma" type="float" label="Gamma" value="5" /> <param name="nu" type="float" label="Nu" value="-0.5" /> <param name="true_positive_threshold" type="float" label="True Positive Threshold" value="0.01" /> <param name="polynomial_degree" type="integer" label="Polynomial Degree" value="3" /> <param name="min_partition_size" type="integer" label="Minimum Partition Size" value="10" /> <param name="svm_type" label="SVM Type" type="select"> <option value="CSVC" selected="true">CSVC</option> <option value="NuSVC">Nu SCV</option> <option value="OneClass">One Class</option> <option value="NuSVR">Nu SVR</option> <option value="EpsilonSVR">Epsilon SVR</option> </param> <param name="kernel" label="Kernel" type="select"> <option value="Linear" selected="true">Linear</option> <option value="Polynomial">Polynomial</option> <option value="RBR">Radial Basis Function</option> <option value="Sigmoid">Sigmoid</option> </param> <param name="charge_state_handling" label="Charge State Handling" type="select"> <option value="Partition" selected="true">Partition</option> <option value="Ignore">Ignore</option> <option value="Feature">Feature</option> </param> <param name="terminal_specificity_handling" label="Terminal Specificity Handling" type="select"> <option value="Partition" selected="true">Partition</option> <option value="Ignore">Ignore</option> <option value="Feature">Feature</option> </param> <param name="missed_cleavages_handling" label="Missed Cleavages Handling" type="select"> <option value="Ignore" selected="true">Ignore</option> <option value="Feature">Feature</option> </param> <param name="missed_cleavages_handling" label="Missed Cleavages Handling" type="select"> <option value="Ignore" selected="true">Ignore</option> <option value="Feature">Feature</option> </param> <param name="mass_error_handling" label="Mass Error Handling" type="select"> <option value="Ignore" selected="true">Ignore</option> <option value="Feature">Feature</option> </param> <param name="qonverter_method" label="Qonverter Method" type="select"> <option value="MonteCarlo" selected="true">Monte Carlo</option> <option value="SingleSVM">SVM (single)</option> <option value="PartitionSVM">SVM (parition)</option> <option value="StaticWeighted">Static Weighted</option> </param> </when> </conditional> <conditional name="scoring"> <param name="override_scoring" type="boolean" truevalue="true" falsevalue="false" label="Modify Search Application Weights" /> <when value="false" /> <when value="true"> <param name="myrimatch_mvh_weight" label="Myrimatch (mvh) Weight" type="float" value="1" /> <param name="myrimatch_mvh_type" label="Myrimatch (mvh) Normalization" type="select"> <option value="off" selected="true">None</option> <option value="quantile">Quantile</option> <option value="linear">Linear</option> </param> <param name="xcorr_weight" label="XCorr Weight" type="float" value="1" /> <param name="xcorr_type" label="XCorr Normalization" type="select"> <option value="off" selected="true">None</option> <option value="quantile">Quantile</option> <option value="linear">Linear</option> </param> <param name="sequest_xcorr_weight" label="Sequest (xcorr) Weight" type="float" value="1" /> <param name="sequest_xcorr_type" label="Sequest (xcorr) Normalization" type="select"> <option value="off" selected="true">None</option> <option value="quantile">Quantile</option> <option value="linear">Linear</option> </param> <param name="sequest_deltacn_weight" label="Sequest (deltacn) Weight" type="float" value="1" /> <param name="sequest_deltacn_type" label="Sequest (deltacn) Normalization" type="select"> <option value="off" selected="true">None</option> <option value="quantile">Quantile</option> <option value="linear">Linear</option> </param> <param name="mascot_score_weight" label="Mascot Score Weight" type="float" value="1" /> <param name="mascot_score_type" label="Mascot Score Normalization" type="select"> <option value="off" selected="true">None</option> <option value="quantile">Quantile</option> <option value="linear">Linear</option> </param> <param name="xtandem_expect_weight" label="X! Tandem (Expectation) Weight" type="float" value="-1" /> <param name="xtandem_expect_type" label="X! Tandem (Expectation) Normalization" type="select"> <option value="off" selected="true">None</option> <option value="quantile">Quantile</option> <option value="linear">Linear</option> </param> <param name="xtandem_hyperscore_weight" label="X! Tandem (hyperscore) Weight" type="float" value="1" /> <param name="xtandem_hyperscore_type" label="X! Tandem (hyperscore)Normalization" type="select"> <option value="off" selected="true">None</option> <option value="quantile">Quantile</option> <option value="linear">Linear</option> </param> <param name="ms-gf_spacevalue_weight" label="MS-GF (spacevalue) Weight" type="float" value="-1" /> <param name="ms-gf_spacevalue_type" label="MS-GF (spacevalue) Normalization" type="select"> <option value="off" selected="true">None</option> <option value="quantile">Quantile</option> <option value="linear">Linear</option> </param> </when> </conditional> </inputs> <outputs> <data format="idpdb" name="output" from_work_dir="output" /> </outputs> <requirements> <requirement type="package">idpqonvert</requirement> </requirements> <help> **What it does** ------ **Citation** For the underlying tool, please cite `TODO` If you use this tool in Galaxy, please cite TODO </help> </tool> <!-- idpQonvert needs spectrum available EmbedSpectrumScanTimes or EmbedSpectrumSources is set. idpQonvert -OverwriteExistingFiles true -MaxFDR 0.05 -MaxImportFDR 0.25 -MaxResultRank 3 -RerankMatches false -TruePositiveThreshold 0.01 -MaxTrainingRank 1 -Gamma 5 -Nu -0.5 -PolynomialDegree 3 -ScoreInfo "1 off myrimatch:mvh; 1 off xcorr; 1 off sequest:xcorr; 1 off sequest:deltacn; 1 off mascot:score; -1 off xexpect; 1 off x\!tandem:hyperscore; -1 off ms-gf:specevalue" -SVMType CSVC -Kernel Linear -ChargeStateHandling Partition -QonverterMethod MonteCarlo -MinPartitionSize 10 -DecoyPrefix RRRRRR -ProteinDatabase test2.fasta input.pepXML ScoreInfo: 1 off myrimatch:mvh; 1 off xcorr; 1 off sequest:xcorr; 1 off sequest:deltacn; 1 off mascot:score; -1 off x!tandem:expect; 1 off x!tandem:hyperscore; -1 off ms-gf:specevalue off is normalization: quantile, linear, or off SVMType: CSVC, NuSVC, OneClass, EpsilonSVR, NuSVR Kernel: Linear, Polynomial, RBF (radial basis function), Sigmoid ChargeStateHandling: Parition, Ignore, Feature TerminalSpecificityHandling: Partition, Ignore, Feature MissedCleavagesHandling: Ignore, Feature MassErrorHandling: Ignore, Feature QonverterMethod: MonteCarlo, SingleSVM, PartitionedSVM, StaticWeighted -->