Mercurial > repos > galaxyp > cardinal_classification
comparison classification.xml @ 3:585ef27873c9 draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit 2c4a1a862900b4efbc30824cbcb798f835b168b2
author | galaxyp |
---|---|
date | Thu, 28 Feb 2019 09:24:53 -0500 |
parents | cbc7e53518ce |
children | 47fc5b518ffc |
comparison
equal
deleted
inserted
replaced
2:cbc7e53518ce | 3:585ef27873c9 |
---|---|
30 | 30 |
31 @READING_MSIDATA_INRAM@ | 31 @READING_MSIDATA_INRAM@ |
32 | 32 |
33 ## to make sure that processed files work as well: | 33 ## to make sure that processed files work as well: |
34 iData(msidata) = iData(msidata)[] | 34 iData(msidata) = iData(msidata)[] |
35 | |
36 ## remove duplicated coordinates | |
37 print(paste0(sum(duplicated(coord(msidata))), " duplicated coordinates were removed")) | |
38 msidata <- msidata[,!duplicated(coord(msidata))] | |
35 | 39 |
36 @DATA_PROPERTIES_INRAM@ | 40 @DATA_PROPERTIES_INRAM@ |
37 | 41 |
38 | 42 |
39 ######################################## PDF ################################### | 43 ######################################## PDF ################################### |
229 maximumy = max(coord(msidata)[,2]) | 233 maximumy = max(coord(msidata)[,2]) |
230 print(image(msidata, mz = topLabels(msidata.pls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), smooth.image="gaussian", main="best m/z heatmap")) | 234 print(image(msidata, mz = topLabels(msidata.pls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), smooth.image="gaussian", main="best m/z heatmap")) |
231 | 235 |
232 ### m/z and pixel information output | 236 ### m/z and pixel information output |
233 pls_classes = data.frame(msidata.pls\$classes[[1]]) | 237 pls_classes = data.frame(msidata.pls\$classes[[1]]) |
234 pixel_names = gsub(", y = ", "_", names(pixels(msidata))) | 238 ## pixel names and coordinates |
235 pixel_names = gsub(" = ", "y_", pixel_names) | 239 ## to remove potential sample names and z dimension, split at comma and take only x and y |
236 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 240 x_coords = unlist(lapply(strsplit(names(pixels(msidata)), ","), `[[`, 1)) |
237 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 241 y_coords = unlist(lapply(strsplit(names(pixels(msidata)), ","), `[[`, 2)) |
242 x_coordinates = gsub("x = ","",x_coords) | |
243 y_coordinates = gsub(" y = ","",y_coords) | |
244 pixel_names = paste0("xy_", x_coordinates, "_", y_coordinates) | |
238 | 245 |
239 ## remove msidata to clean up RAM space | 246 ## remove msidata to clean up RAM space |
240 rm(msidata) | 247 rm(msidata) |
241 gc() | 248 gc() |
242 pls_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, pls_classes) | 249 pls_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, pls_classes) |
371 ### image of the best m/z | 378 ### image of the best m/z |
372 minimumy = min(coord(msidata)[,2]) | 379 minimumy = min(coord(msidata)[,2]) |
373 maximumy = max(coord(msidata)[,2]) | 380 maximumy = max(coord(msidata)[,2]) |
374 print(image(msidata, mz = topLabels(msidata.opls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) | 381 print(image(msidata, mz = topLabels(msidata.opls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) |
375 | 382 |
376 ## m/z and pixel information output | |
377 opls_classes = data.frame(msidata.opls\$classes[[1]]) | 383 opls_classes = data.frame(msidata.opls\$classes[[1]]) |
378 pixel_names = gsub(", y = ", "_", names(pixels(msidata))) | 384 ## pixel names and coordinates |
379 pixel_names = gsub(" = ", "y_", pixel_names) | 385 ## to remove potential sample names and z dimension, split at comma and take only x and y |
380 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 386 x_coords = unlist(lapply(strsplit(names(pixels(msidata)), ","), `[[`, 1)) |
381 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 387 y_coords = unlist(lapply(strsplit(names(pixels(msidata)), ","), `[[`, 2)) |
388 x_coordinates = gsub("x = ","",x_coords) | |
389 y_coordinates = gsub(" y = ","",y_coords) | |
390 pixel_names = paste0("xy_", x_coordinates, "_", y_coordinates) | |
391 | |
382 opls_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, opls_classes) | 392 opls_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, opls_classes) |
383 colnames(opls_classes2) = c("pixel names", "x", "y","predicted condition") | 393 colnames(opls_classes2) = c("pixel names", "x", "y","predicted condition") |
384 | 394 |
385 ## remove msidata to clean up RAM space | 395 ## remove msidata to clean up RAM space |
386 rm(msidata) | 396 rm(msidata) |
518 maximumy = max(coord(msidata)[,2]) | 528 maximumy = max(coord(msidata)[,2]) |
519 print(image(msidata, mz = topLabels(msidata.ssc)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) | 529 print(image(msidata, mz = topLabels(msidata.ssc)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) |
520 | 530 |
521 ## m/z and pixel information output | 531 ## m/z and pixel information output |
522 ssc_classes = data.frame(msidata.ssc\$classes[[1]]) | 532 ssc_classes = data.frame(msidata.ssc\$classes[[1]]) |
523 pixel_names = gsub(", y = ", "_", names(pixels(msidata))) | 533 |
524 pixel_names = gsub(" = ", "y_", pixel_names) | 534 ## pixel names and coordinates |
525 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 535 ## to remove potential sample names and z dimension, split at comma and take only x and y |
526 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 536 x_coords = unlist(lapply(strsplit(names(pixels(msidata)), ","), `[[`, 1)) |
537 y_coords = unlist(lapply(strsplit(names(pixels(msidata)), ","), `[[`, 2)) | |
538 x_coordinates = gsub("x = ","",x_coords) | |
539 y_coordinates = gsub(" y = ","",y_coords) | |
540 pixel_names = paste0("xy_", x_coordinates, "_", y_coordinates) | |
541 | |
527 | 542 |
528 ## remove msidata to clean up RAM space | 543 ## remove msidata to clean up RAM space |
529 rm(msidata) | 544 rm(msidata) |
530 gc() | 545 gc() |
531 | 546 |