Mercurial > repos > galaxyp > cardinal_classification
comparison classification.xml @ 7:6f4c34f8d5ba draft
"planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit f986c51abe33c7f622d429a3c4a79ee24b33c1f3"
author | galaxyp |
---|---|
date | Thu, 23 Apr 2020 08:03:28 -0400 |
parents | 47fc5b518ffc |
children | 277dc652246e |
comparison
equal
deleted
inserted
replaced
6:b574b84afc4d | 7:6f4c34f8d5ba |
---|---|
1 <tool id="cardinal_classification" name="MSI classification" version="@VERSION@.3"> | 1 <tool id="cardinal_classification" name="MSI classification" version="@VERSION@.0"> |
2 <description>spatial classification of mass spectrometry imaging data</description> | 2 <description>spatial classification of mass spectrometry imaging data</description> |
3 <macros> | 3 <macros> |
4 <import>macros.xml</import> | 4 <import>macros.xml</import> |
5 </macros> | 5 </macros> |
6 <expand macro="requirements"> | 6 <expand macro="requirements"> |
7 <requirement type="package" version="3.0">r-ggplot2</requirement> | |
8 <requirement type="package" version="2.3">r-gridextra</requirement> | 7 <requirement type="package" version="2.3">r-gridextra</requirement> |
9 <requirement type="package" version="0.20_35">r-lattice</requirement> | 8 <requirement type="package" version="3.2.1">r-ggplot2</requirement> |
10 </expand> | 9 </expand> |
11 <command detect_errors="exit_code"> | 10 <command detect_errors="exit_code"> |
12 <![CDATA[ | 11 <![CDATA[ |
13 | 12 |
14 @INPUT_LINKING@ | 13 @INPUT_LINKING@ |
23 | 22 |
24 ################################# load libraries and read file ######################### | 23 ################################# load libraries and read file ######################### |
25 | 24 |
26 library(Cardinal) | 25 library(Cardinal) |
27 library(gridExtra) | 26 library(gridExtra) |
28 library(lattice) | |
29 library(ggplot2) | 27 library(ggplot2) |
30 | 28 |
31 @READING_MSIDATA_INRAM@ | 29 |
30 @READING_MSIDATA@ | |
31 | |
32 msidata = as(msidata, "MSImageSet") ##coercion to MSImageSet | |
32 | 33 |
33 | 34 |
34 ## remove duplicated coordinates | 35 ## remove duplicated coordinates |
35 msidata <- msidata[,!duplicated(coord(msidata))] | 36 msidata <- msidata[,!duplicated(coord(msidata))] |
36 | 37 |
243 grid.table(summary_table5, rows= NULL) | 244 grid.table(summary_table5, rows= NULL) |
244 | 245 |
245 ### image of the best m/z | 246 ### image of the best m/z |
246 minimumy = min(coord(msidata)[,2]) | 247 minimumy = min(coord(msidata)[,2]) |
247 maximumy = max(coord(msidata)[,2]) | 248 maximumy = max(coord(msidata)[,2]) |
248 print(image(msidata, mz = topLabels(msidata.pls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), smooth.image="gaussian", main="best m/z heatmap")) | 249 print(image(msidata, mz = topFeatures(msidata.pls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), smooth.image="gaussian", main="best m/z heatmap")) |
249 | 250 |
250 ### m/z and pixel information output | 251 ### m/z and pixel information output |
251 pls_classes = data.frame(msidata.pls\$classes[[1]]) | 252 pls_classes = data.frame(msidata.pls\$classes[[1]]) |
252 ## pixel names and coordinates | 253 ## pixel names and coordinates |
253 ## to remove potential sample names and z dimension, split at comma and take only x and y | 254 ## to remove potential sample names and z dimension, split at comma and take only x and y |
260 ## remove msidata to clean up RAM space | 261 ## remove msidata to clean up RAM space |
261 rm(msidata) | 262 rm(msidata) |
262 gc() | 263 gc() |
263 pls_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, pls_classes) | 264 pls_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, pls_classes) |
264 colnames(pls_classes2) = c("pixel names", "x", "y","predicted condition") | 265 colnames(pls_classes2) = c("pixel names", "x", "y","predicted condition") |
265 pls_toplabels = topLabels(msidata.pls, n=Inf) | 266 pls_toplabels = topFeatures(msidata.pls, n=Inf) |
266 pls_toplabels[,4:6] <-round(pls_toplabels[,4:6],6) | 267 pls_toplabels[,4:6] <-round(pls_toplabels[,4:6],6) |
267 write.table(pls_toplabels, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 268 write.table(pls_toplabels, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
268 write.table(pls_classes2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 269 write.table(pls_classes2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
269 | 270 |
270 ## image with predicted classes | 271 ## image with predicted classes |
409 grid.table(summary_table5, rows= NULL) | 410 grid.table(summary_table5, rows= NULL) |
410 | 411 |
411 ### image of the best m/z | 412 ### image of the best m/z |
412 minimumy = min(coord(msidata)[,2]) | 413 minimumy = min(coord(msidata)[,2]) |
413 maximumy = max(coord(msidata)[,2]) | 414 maximumy = max(coord(msidata)[,2]) |
414 print(image(msidata, mz = topLabels(msidata.opls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) | 415 print(image(msidata, mz = topFeatures(msidata.opls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) |
415 | 416 |
416 opls_classes = data.frame(msidata.opls\$classes[[1]]) | 417 opls_classes = data.frame(msidata.opls\$classes[[1]]) |
417 ## pixel names and coordinates | 418 ## pixel names and coordinates |
418 ## to remove potential sample names and z dimension, split at comma and take only x and y | 419 ## to remove potential sample names and z dimension, split at comma and take only x and y |
419 x_coords = unlist(lapply(strsplit(names(pixels(msidata)), ","), `[[`, 1)) | 420 x_coords = unlist(lapply(strsplit(names(pixels(msidata)), ","), `[[`, 1)) |
427 | 428 |
428 ## remove msidata to clean up RAM space | 429 ## remove msidata to clean up RAM space |
429 rm(msidata) | 430 rm(msidata) |
430 gc() | 431 gc() |
431 | 432 |
432 opls_toplabels = topLabels(msidata.opls, n=Inf) | 433 opls_toplabels = topFeatures(msidata.opls, n=Inf) |
433 opls_toplabels[,4:6] <-round(opls_toplabels[,4:6],6) | 434 opls_toplabels[,4:6] <-round(opls_toplabels[,4:6],6) |
434 write.table(opls_toplabels, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 435 write.table(opls_toplabels, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
435 write.table(opls_classes2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 436 write.table(opls_classes2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
436 | 437 |
437 ## image with predicted classes | 438 ## image with predicted classes |
575 grid.table(summary_table5, rows= NULL) | 576 grid.table(summary_table5, rows= NULL) |
576 | 577 |
577 ### image of the best m/z | 578 ### image of the best m/z |
578 minimumy = min(coord(msidata)[,2]) | 579 minimumy = min(coord(msidata)[,2]) |
579 maximumy = max(coord(msidata)[,2]) | 580 maximumy = max(coord(msidata)[,2]) |
580 print(image(msidata, mz = topLabels(msidata.ssc)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) | 581 print(image(msidata, mz = topFeatures(msidata.ssc)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) |
581 | 582 |
582 ## m/z and pixel information output | 583 ## m/z and pixel information output |
583 ssc_classes = data.frame(msidata.ssc\$classes[[1]]) | 584 ssc_classes = data.frame(msidata.ssc\$classes[[1]]) |
584 | 585 |
585 ## pixel names and coordinates | 586 ## pixel names and coordinates |
595 rm(msidata) | 596 rm(msidata) |
596 gc() | 597 gc() |
597 | 598 |
598 ssc_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, ssc_classes) | 599 ssc_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, ssc_classes) |
599 colnames(ssc_classes2) = c("pixel names", "x", "y","predicted condition") | 600 colnames(ssc_classes2) = c("pixel names", "x", "y","predicted condition") |
600 ssc_toplabels = topLabels(msidata.ssc, n=Inf) | 601 ssc_toplabels = topFeatures(msidata.ssc, n=Inf) |
601 ssc_toplabels[,6:9] <-round(ssc_toplabels[,6:9],6) | 602 ssc_toplabels[,6:9] <-round(ssc_toplabels[,6:9],6) |
602 write.table(ssc_toplabels, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 603 write.table(ssc_toplabels, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
603 write.table(ssc_classes2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 604 write.table(ssc_classes2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
604 | 605 |
605 ## image with predicted classes | 606 ## image with predicted classes |
662 pixel_names = gsub(" = ", "y_", pixel_names) | 663 pixel_names = gsub(" = ", "y_", pixel_names) |
663 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 664 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] |
664 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 665 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] |
665 predicted_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, predicted_classes) | 666 predicted_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, predicted_classes) |
666 colnames(predicted_classes2) = c("pixel names", "x", "y","predicted condition") | 667 colnames(predicted_classes2) = c("pixel names", "x", "y","predicted condition") |
667 predicted_toplabels = topLabels(prediction, n=Inf) | 668 predicted_toplabels = topFeatures(prediction, n=Inf) |
668 if (colnames(predicted_toplabels)[4] == "coefficients"){ | 669 if (colnames(predicted_toplabels)[4] == "coefficients"){ |
669 predicted_toplabels[,4:6] <-round(predicted_toplabels[,4:6],5) | 670 predicted_toplabels[,4:6] <-round(predicted_toplabels[,4:6],5) |
670 | 671 |
671 }else{ | 672 }else{ |
672 predicted_toplabels[,6:9] <-round(predicted_toplabels[,6:9],5)} | 673 predicted_toplabels[,6:9] <-round(predicted_toplabels[,6:9],5)} |
998 </conditional> | 999 </conditional> |
999 <param name="output_rdata" value="True"/> | 1000 <param name="output_rdata" value="True"/> |
1000 <output name="mzfeatures" file="features_test6.tabular"/> | 1001 <output name="mzfeatures" file="features_test6.tabular"/> |
1001 <output name="pixeloutput" file="pixels_test6.tabular"/> | 1002 <output name="pixeloutput" file="pixels_test6.tabular"/> |
1002 <output name="classification_images" file="test6.pdf" compare="sim_size"/> | 1003 <output name="classification_images" file="test6.pdf" compare="sim_size"/> |
1003 <output name="classification_rdata" file="test6.rdata" compare="sim_size" /> | 1004 <output name="classification_rdata" file="test6.rdata" compare="sim_size" delta="15000"/> |
1004 </test> | 1005 </test> |
1005 | 1006 |
1006 <test expect_num_outputs="4"> | 1007 <test expect_num_outputs="4"> |
1007 <param name="infile" value="testfile_squares.rdata" ftype="rdata"/> | 1008 <param name="infile" value="testfile_squares.rdata" ftype="rdata"/> |
1008 <conditional name="type_cond"> | 1009 <conditional name="type_cond"> |
1088 | 1089 |
1089 ]]> | 1090 ]]> |
1090 </help> | 1091 </help> |
1091 <expand macro="citations"/> | 1092 <expand macro="citations"/> |
1092 </tool> | 1093 </tool> |
1094 |