Mercurial > repos > galaxyp > cardinal_classification
diff classification.xml @ 7:6f4c34f8d5ba draft
"planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit f986c51abe33c7f622d429a3c4a79ee24b33c1f3"
author | galaxyp |
---|---|
date | Thu, 23 Apr 2020 08:03:28 -0400 |
parents | 47fc5b518ffc |
children | 277dc652246e |
line wrap: on
line diff
--- a/classification.xml Wed Mar 25 08:04:22 2020 -0400 +++ b/classification.xml Thu Apr 23 08:03:28 2020 -0400 @@ -1,12 +1,11 @@ -<tool id="cardinal_classification" name="MSI classification" version="@VERSION@.3"> +<tool id="cardinal_classification" name="MSI classification" version="@VERSION@.0"> <description>spatial classification of mass spectrometry imaging data</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"> - <requirement type="package" version="3.0">r-ggplot2</requirement> <requirement type="package" version="2.3">r-gridextra</requirement> - <requirement type="package" version="0.20_35">r-lattice</requirement> + <requirement type="package" version="3.2.1">r-ggplot2</requirement> </expand> <command detect_errors="exit_code"> <![CDATA[ @@ -25,10 +24,12 @@ library(Cardinal) library(gridExtra) -library(lattice) library(ggplot2) -@READING_MSIDATA_INRAM@ + +@READING_MSIDATA@ + + msidata = as(msidata, "MSImageSet") ##coercion to MSImageSet ## remove duplicated coordinates @@ -245,7 +246,7 @@ ### image of the best m/z minimumy = min(coord(msidata)[,2]) maximumy = max(coord(msidata)[,2]) - print(image(msidata, mz = topLabels(msidata.pls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), smooth.image="gaussian", main="best m/z heatmap")) + print(image(msidata, mz = topFeatures(msidata.pls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), smooth.image="gaussian", main="best m/z heatmap")) ### m/z and pixel information output pls_classes = data.frame(msidata.pls\$classes[[1]]) @@ -262,7 +263,7 @@ gc() pls_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, pls_classes) colnames(pls_classes2) = c("pixel names", "x", "y","predicted condition") - pls_toplabels = topLabels(msidata.pls, n=Inf) + pls_toplabels = topFeatures(msidata.pls, n=Inf) pls_toplabels[,4:6] <-round(pls_toplabels[,4:6],6) write.table(pls_toplabels, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") write.table(pls_classes2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") @@ -411,7 +412,7 @@ ### image of the best m/z minimumy = min(coord(msidata)[,2]) maximumy = max(coord(msidata)[,2]) - print(image(msidata, mz = topLabels(msidata.opls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) + print(image(msidata, mz = topFeatures(msidata.opls)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) opls_classes = data.frame(msidata.opls\$classes[[1]]) ## pixel names and coordinates @@ -429,7 +430,7 @@ rm(msidata) gc() - opls_toplabels = topLabels(msidata.opls, n=Inf) + opls_toplabels = topFeatures(msidata.opls, n=Inf) opls_toplabels[,4:6] <-round(opls_toplabels[,4:6],6) write.table(opls_toplabels, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") write.table(opls_classes2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") @@ -577,7 +578,7 @@ ### image of the best m/z minimumy = min(coord(msidata)[,2]) maximumy = max(coord(msidata)[,2]) - print(image(msidata, mz = topLabels(msidata.ssc)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) + print(image(msidata, mz = topFeatures(msidata.ssc)[1,1], normalize.image = "linear", contrast.enhance = "histogram",smooth.image="gaussian", ylim= c(maximumy+0.2*maximumy,minimumy-0.2*minimumy), main="best m/z heatmap")) ## m/z and pixel information output ssc_classes = data.frame(msidata.ssc\$classes[[1]]) @@ -597,7 +598,7 @@ ssc_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, ssc_classes) colnames(ssc_classes2) = c("pixel names", "x", "y","predicted condition") - ssc_toplabels = topLabels(msidata.ssc, n=Inf) + ssc_toplabels = topFeatures(msidata.ssc, n=Inf) ssc_toplabels[,6:9] <-round(ssc_toplabels[,6:9],6) write.table(ssc_toplabels, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") write.table(ssc_classes2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") @@ -664,7 +665,7 @@ y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] predicted_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, predicted_classes) colnames(predicted_classes2) = c("pixel names", "x", "y","predicted condition") - predicted_toplabels = topLabels(prediction, n=Inf) + predicted_toplabels = topFeatures(prediction, n=Inf) if (colnames(predicted_toplabels)[4] == "coefficients"){ predicted_toplabels[,4:6] <-round(predicted_toplabels[,4:6],5) @@ -1000,7 +1001,7 @@ <output name="mzfeatures" file="features_test6.tabular"/> <output name="pixeloutput" file="pixels_test6.tabular"/> <output name="classification_images" file="test6.pdf" compare="sim_size"/> - <output name="classification_rdata" file="test6.rdata" compare="sim_size" /> + <output name="classification_rdata" file="test6.rdata" compare="sim_size" delta="15000"/> </test> <test expect_num_outputs="4"> @@ -1090,3 +1091,4 @@ </help> <expand macro="citations"/> </tool> +