Mercurial > repos > galaxyp > cardinal_data_exporter
comparison data_exporter.xml @ 0:28ba52c9548c draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit 0825a4ccd3ebf4ca8a298326d14f3e7b25ae8415
author | galaxyp |
---|---|
date | Mon, 01 Oct 2018 01:05:33 -0400 |
parents | |
children | e30d8b72415f |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:28ba52c9548c |
---|---|
1 <tool id="cardinal_data_exporter" name="MSI data exporter" version="@VERSION@.0"> | |
2 <description> | |
3 exports imzML and Analyze7.5 to tabular files | |
4 </description> | |
5 <macros> | |
6 <import>macros.xml</import> | |
7 </macros> | |
8 <expand macro="requirements"/> | |
9 <command detect_errors="exit_code"> | |
10 <![CDATA[ | |
11 | |
12 @INPUT_LINKING@ | |
13 cat '${cardinal_imzml_exporter}' && | |
14 Rscript '${cardinal_imzml_exporter}' | |
15 | |
16 ]]> | |
17 </command> | |
18 <configfiles> | |
19 <configfile name="cardinal_imzml_exporter"><![CDATA[ | |
20 | |
21 ################################# load libraries and read file ################# | |
22 | |
23 library(Cardinal) | |
24 | |
25 @READING_MSIDATA@ | |
26 | |
27 npeaks= sum(spectra(msidata)[]>0, na.rm=TRUE) | |
28 | |
29 if (npeaks > 0){ | |
30 | |
31 ###################### Intensity matrix output ################################ | |
32 | |
33 #if "int_matrix" in str($output_options).split(","): | |
34 print("intensity matrix output") | |
35 | |
36 spectramatrix = spectra(msidata)[] | |
37 mz_names = gsub(" = ", "_", names(features(msidata))) | |
38 mz_names = gsub("/", "", mz_names) | |
39 pixel_names = gsub(", y = ", "_", names(pixels(msidata))) | |
40 pixel_names = gsub(" = ", "y_", pixel_names) | |
41 | |
42 spectramatrix = cbind(mz_names,spectramatrix) | |
43 newmatrix = rbind(c("mz_name", pixel_names), spectramatrix) | |
44 write.table(newmatrix, file="$intensity_matrix", quote = FALSE, row.names = FALSE, col.names=FALSE, sep = "\t") | |
45 | |
46 #end if | |
47 | |
48 | |
49 ############################## m/z feature output ########################## | |
50 #if "mz_tabular" in str($output_options).split(","): | |
51 print("mz feature output") | |
52 | |
53 mz_names = gsub(" = ", "_", names(features(msidata))) | |
54 mz_names = gsub("/", "", mz_names) | |
55 | |
56 ## mean, median, sd and SEM intensity per file and mz | |
57 full_sample_mean = apply(spectra(msidata)[],1,mean, na.rm=TRUE) | |
58 full_sample_median = apply(spectra(msidata)[],1,median, na.rm=TRUE) | |
59 full_sample_sd = apply(spectra(msidata)[],1,sd, na.rm=TRUE) | |
60 full_sample_sem = full_sample_sd/full_sample_mean*100 | |
61 ## npeaks and sum of all intensities per spectrum and mz | |
62 mzTIC = rowSums(spectra(msidata)[], na.rm=TRUE) ## calculate intensity sum for each m/z | |
63 peakspermz = rowSums(spectra(msidata)[] > 0, na.rm=TRUE) ## calculate number of intensities > 0 for each m/z (max = number of spectra) | |
64 | |
65 ## combine into dataframe, order is the same for all vectors | |
66 mz_df = data.frame(mz_names, mz(msidata), full_sample_mean, full_sample_median, full_sample_sd, full_sample_sem, mzTIC, peakspermz) | |
67 colnames(mz_df) = c("mz_names", "mz", "sample_mean", "sample_median", "sample_sd", "sample_sem", "intensity_sum", "number_peaks") | |
68 write.table(mz_df, file="$feature_output", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | |
69 #end if | |
70 | |
71 ###################### summarized m/z feature output ####################### | |
72 | |
73 #if str($tabular_annotation.load_annotation) == 'yes_annotation': | |
74 print("summarized annotation output") | |
75 | |
76 ## read and extract x,y,annotation information | |
77 input_tabular = read.delim("$tabular_annotation.annotation_file", header = $tabular_annotation.tabular_header, stringsAsFactors = FALSE) | |
78 annotation_input = input_tabular[,c($tabular_annotation.column_x, $tabular_annotation.column_y, $tabular_annotation.column_names)] | |
79 colnames(annotation_input) = c("x", "y", "annotation") | |
80 | |
81 ## merge with coordinate information of msidata | |
82 msidata_coordinates = cbind(coord(msidata)[,1:2], c(1:ncol(msidata))) | |
83 colnames(msidata_coordinates)[3] = "pixel_index" | |
84 merged_annotation = merge(msidata_coordinates, annotation_input, by=c("x", "y"), all.x=TRUE) | |
85 merged_annotation[is.na(merged_annotation)] = "NA" | |
86 merged_annotation = merged_annotation[order(merged_annotation\$pixel_index),] | |
87 msidata\$annotation = as.factor(merged_annotation[,4]) | |
88 | |
89 ## create m/z feature name | |
90 mz_names = gsub(" = ", "_", names(features(msidata))) | |
91 mz_names = gsub("/", "", mz_names) | |
92 | |
93 #if "mean" in str($tabular_annotation.summary_type).split(","): | |
94 print("summarized mean") | |
95 | |
96 ## calculate mean per annotation group | |
97 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | |
98 count = 1 | |
99 for (subsample in levels(msidata\$annotation)){ | |
100 subsample_pixels = msidata[,msidata\$annotation == subsample] | |
101 subsample_calc = apply(spectra(subsample_pixels)[],1,mean, na.rm=TRUE) | |
102 sample_matrix = cbind(sample_matrix, subsample_calc) | |
103 count = count+1} | |
104 sample_matrix_mean = cbind(mz_names,sample_matrix) | |
105 sample_matrix_mean = rbind(c("mz_name", levels(msidata\$annotation)), sample_matrix_mean) | |
106 write.table(sample_matrix_mean, file="$summarized_mean", quote = FALSE, row.names = FALSE, col.names=FALSE, sep = "\t") | |
107 #end if | |
108 | |
109 #if "median" in str($tabular_annotation.summary_type).split(","): | |
110 print("summarized median") | |
111 | |
112 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | |
113 count = 1 | |
114 for (subsample in levels(msidata\$annotation)){ | |
115 subsample_pixels = msidata[,msidata\$annotation == subsample] | |
116 subsample_calc = apply(spectra(subsample_pixels)[],1,median, na.rm=TRUE) | |
117 sample_matrix = cbind(sample_matrix, subsample_calc) | |
118 count = count+1} | |
119 sample_matrix_median = cbind(mz_names,sample_matrix) | |
120 sample_matrix_median = rbind(c("mz name", levels(msidata\$annotation)), sample_matrix_median) | |
121 write.table(sample_matrix_median, file="$summarized_median", quote = FALSE, row.names = FALSE, col.names=FALSE, sep = "\t") | |
122 #end if | |
123 | |
124 #if "sd" in str($tabular_annotation.summary_type).split(","): | |
125 print("summarized sd") | |
126 | |
127 sample_matrix = matrix(,ncol=0, nrow=nrow(msidata)) | |
128 count = 1 | |
129 for (subsample in levels(msidata\$annotation)){ | |
130 subsample_pixels = msidata[,msidata\$annotation == subsample] | |
131 subsample_calc = apply(spectra(subsample_pixels)[],1,sd, na.rm=TRUE) | |
132 sample_matrix = cbind(sample_matrix, subsample_calc) | |
133 count = count+1} | |
134 sample_matrix_sd = cbind(mz_names,sample_matrix) | |
135 sample_matrix_sd = rbind(c("mz name", levels(msidata\$annotation)), sample_matrix_sd) | |
136 write.table(sample_matrix_sd, file="$summarized_sd", quote = FALSE, row.names = FALSE, col.names=FALSE, sep = "\t") | |
137 #end if | |
138 | |
139 #end if | |
140 | |
141 | |
142 ############################ spectra (pixel) output ############################ | |
143 #if "pixel_tabular" in str($output_options).split(","): | |
144 print("pixel output") | |
145 | |
146 ## coordinates | |
147 xycoordinates = coord(msidata)[,1:2] | |
148 | |
149 ## pixel name | |
150 pixel_names = gsub(", y = ", "_", names(pixels(msidata))) | |
151 pixel_names = gsub(" = ", "y_", pixel_names) | |
152 | |
153 ## pixel order | |
154 pixelxyarray=1:length(pixels(msidata)) | |
155 | |
156 ## number of pixels per spectrum: every intensity value > 0 counts as peak | |
157 peaksperpixel = colSums(spectra(msidata)[]> 0, na.rm=TRUE) | |
158 | |
159 ## Total ion chromatogram per spectrum | |
160 TICs = round(colSums(spectra(msidata)[], na.rm=TRUE), digits = 2) | |
161 | |
162 ## Highest m/z per spectrum | |
163 highestmz = apply(spectra(msidata)[],2,which.max) | |
164 highestmz_data = mz(msidata)[highestmz] | |
165 | |
166 ## Combine into dataframe; order is the same for all vectors | |
167 spectra_df = data.frame(pixel_names, xycoordinates, pixelxyarray, peaksperpixel, TICs, highestmz_data) | |
168 colnames(spectra_df) = c("spectra_names", "x_values", "y_values","pixel_order", "peaks_per_spectrum", "spectrum_TIC", "most_abundant_mz") | |
169 | |
170 #if str($counting_calibrants.pixel_with_calibrants) == "yes_calibrants": | |
171 | |
172 calibrant_list = read.delim("$counting_calibrants.mz_tabular", header = $counting_calibrants.feature_header, na.strings=c("","NA"), stringsAsFactors = FALSE) | |
173 calibrant_list = calibrant_list[,$counting_calibrants.feature_column, drop=FALSE] | |
174 ### calculate how many input calibrant m/z are valid: | |
175 inputcalibrants = calibrant_list[calibrant_list[,1]>min(mz(msidata)) & calibrant_list[,1]<max(mz(msidata)),,drop = FALSE] | |
176 inputcalibrantmasses = inputcalibrants[,1] | |
177 | |
178 ##QC plot number 2) Number of calibrants per spectrum | |
179 | |
180 ## matrix with calibrants in columns and in rows if there is peak intensity in range or not | |
181 pixelmatrix = matrix(ncol=ncol(msidata), nrow = 0) | |
182 | |
183 if (length(inputcalibrantmasses) != 0){ | |
184 | |
185 ## calculate plusminus values in m/z for each calibrant | |
186 plusminusvalues = rep($counting_calibrants.plusminus_ppm/1000000, length(inputcalibrantmasses))*inputcalibrantmasses | |
187 | |
188 ## filter for m/z window of each calibrant and calculate if sum of peak intensities > 0 | |
189 | |
190 for (mass in 1:length(inputcalibrantmasses)){ | |
191 filtered_data = msidata[mz(msidata) >= inputcalibrantmasses[mass]-plusminusvalues[mass] & mz(msidata) <= inputcalibrantmasses[mass]+plusminusvalues[mass],] | |
192 if (nrow(filtered_data) > 1 & sum(spectra(filtered_data)[],na.rm=TRUE) > 0){ | |
193 ## intensity of all m/z > 0 | |
194 intensity_sum = colSums(spectra(filtered_data)[], na.rm=TRUE) > 0 | |
195 }else if(nrow(filtered_data) == 1 & sum(spectra(filtered_data)[], na.rm=TRUE) > 0){ | |
196 ## intensity of only m/z > 0 | |
197 intensity_sum = spectra(filtered_data)[] > 0 | |
198 }else{ | |
199 intensity_sum = rep(FALSE, ncol(filtered_data))} | |
200 ## for each pixel add sum of intensities > 0 in the given m/z range | |
201 pixelmatrix = rbind(pixelmatrix, intensity_sum) | |
202 } | |
203 ## for each pixel count TRUE (each calibrant m/z range with intensity > 0 is TRUE) | |
204 countvector= as.factor(colSums(pixelmatrix, na.rm=TRUE)) | |
205 }else{countvector = rep(0,ncol(msidata))} | |
206 countdf= cbind(coord(msidata)[,1:2], countvector) ## add pixel coordinates to counts | |
207 colnames(countdf) = c("x_values", "y_values", "input m/z count") | |
208 spectra_df = merge(spectra_df, countdf, by=c("x_values", "y_values")) | |
209 | |
210 ## sort columns to have spectra_names as rowname in first column | |
211 spectra_df = spectra_df[c("spectra_names", "x_values", "y_values","pixel_order", "peaks_per_spectrum", "spectrum_TIC", "most_abundant_mz", "input m/z count")] | |
212 | |
213 #end if | |
214 #if str($tabular_annotation.load_annotation) == 'yes_annotation': | |
215 | |
216 colnames(annotation_input) = c("x_values", "y_values", "annotation") | |
217 spectra_df = merge(annotation_input,spectra_df, by=c("x_values", "y_values")) | |
218 | |
219 ## sort columns to have spectra_names as rowname in first column | |
220 #if str($counting_calibrants.pixel_with_calibrants) == "yes_calibrants": | |
221 spectra_df = spectra_df[c("spectra_names", "x_values", "y_values","pixel_order", "peaks_per_spectrum", "spectrum_TIC", "most_abundant_mz", "input m/z count", "annotation")] | |
222 #else | |
223 spectra_df = spectra_df[c("spectra_names", "x_values", "y_values","pixel_order", "peaks_per_spectrum", "spectrum_TIC", "most_abundant_mz", "annotation")] | |
224 #end if | |
225 | |
226 #end if | |
227 ## sort rows according to original pixel order | |
228 spectra_df = spectra_df[match(pixel_names, spectra_df\$spectra_names),] | |
229 | |
230 ## Create list and output tabular | |
231 write.table(spectra_df, file="$pixel_output", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | |
232 #end if | |
233 | |
234 | |
235 }else{ | |
236 print("file has no features or pixels left") | |
237 } | |
238 | |
239 | |
240 ]]></configfile> | |
241 </configfiles> | |
242 <inputs> | |
243 <expand macro="reading_msidata"/> | |
244 <param name="output_options" type="select" display="checkboxes" optional="False" multiple="true" label="Multiple output files can be selected"> | |
245 <option value="int_matrix" selected="True" >intensity matrix</option> | |
246 <option value="mz_tabular">mz feature output</option> | |
247 <option value="pixel_tabular">pixel output</option> | |
248 </param> | |
249 <conditional name="counting_calibrants"> | |
250 <param name="pixel_with_calibrants" type="select" label="Add number of m/z of interest per spectrum to pixel output"> | |
251 <option value="no_calibrants" selected="True">no</option> | |
252 <option value="yes_calibrants">yes</option> | |
253 </param> | |
254 <when value="no_calibrants"/> | |
255 <when value="yes_calibrants"> | |
256 <expand macro="reading_1_column_mz_tabular" label="For each spectrum the occurrence of the provided m/z values is counted"/> | |
257 <param name="plusminus_ppm" value="200" type="float" label="ppm range will be added in both directions to input m/z" help="The m/z window is used to search for peaks, if intensity > 0 found in the window the m/z is considered present, if all intensities are 0 the m/z is considered not present"/> | |
258 </when> | |
259 </conditional> | |
260 <conditional name="tabular_annotation"> | |
261 <param name="load_annotation" type="select" label="Pixel annotation can be used to summarize intensities per annotation group"> | |
262 <option value="no_annotation" selected="True">no</option> | |
263 <option value="yes_annotation">yes</option> | |
264 </param> | |
265 <when value="no_annotation"/> | |
266 <when value="yes_annotation"> | |
267 <expand macro="reading_pixel_annotations"/> | |
268 <param name="summary_type" type="select" display="checkboxes" optional="False" multiple="true" label="Calculation for each m/z and all pixels of a annotation group" help="This step will only work if pixel annotations are provided"> | |
269 <option value="mean">mean</option> | |
270 <option value="median">median</option> | |
271 <option value="sd">standard deviation</option> | |
272 </param> | |
273 </when> | |
274 </conditional> | |
275 </inputs> | |
276 <outputs> | |
277 <data format="tabular" name="intensity_matrix" label="${tool.name} on ${on_string}: intensity_matrix"> | |
278 <filter>"int_matrix" in output_options</filter> | |
279 </data> | |
280 <data format="tabular" name="pixel_output" label="${tool.name} on ${on_string}: spectra"> | |
281 <filter>"pixel_tabular" in output_options</filter> | |
282 </data> | |
283 <data format="tabular" name="feature_output" label="${tool.name} on ${on_string}: features"> | |
284 <filter>"mz_tabular" in output_options</filter> | |
285 </data> | |
286 <data format="tabular" name="summarized_mean" label="${tool.name} on ${on_string}: group_mean"> | |
287 <filter>tabular_annotation['load_annotation'] == 'yes_annotation' and 'mean' in tabular_annotation['summary_type']</filter> | |
288 </data> | |
289 <data format="tabular" name="summarized_median" label="${tool.name} on ${on_string}: group_median"> | |
290 <filter>tabular_annotation['load_annotation'] == 'yes_annotation' and 'median' in tabular_annotation['summary_type']</filter> | |
291 </data> | |
292 <data format="tabular" name="summarized_sd" label="${tool.name} on ${on_string}: group_sd"> | |
293 <filter>tabular_annotation['load_annotation'] == 'yes_annotation' and 'sd' in tabular_annotation['summary_type']</filter> | |
294 </data> | |
295 </outputs> | |
296 <tests> | |
297 <test expect_num_outputs="2"> | |
298 <expand macro="infile_imzml"/> | |
299 <param name="output_options" value="int_matrix,mz_tabular"/> | |
300 <output name="intensity_matrix" file="int_matrix1.tabular"/> | |
301 <output name="feature_output" file="features_out1.tabular"/> | |
302 </test> | |
303 <test expect_num_outputs="3"> | |
304 <expand macro="infile_analyze75"/> | |
305 <param name="output_options" value="pixel_tabular"/> | |
306 <conditional name="tabular_annotation"> | |
307 <param name="load_annotation" value="yes_annotation"/> | |
308 <param name="annotation_file" value="annotations.tabular"/> | |
309 <param name="column_x" value="1"/> | |
310 <param name="column_y" value="2"/> | |
311 <param name="column_names" value="4"/> | |
312 <param name="tabular_header" value="True"/> | |
313 <param name="summary_type" value="mean,sd"/> | |
314 </conditional> | |
315 <output name="pixel_output" file="pixel_out2.tabular"/> | |
316 <output name="summarized_mean" file="mean_out2.tabular"/> | |
317 <output name="summarized_sd" file="sd_out2.tabular"/> | |
318 </test> | |
319 <test expect_num_outputs="3"> | |
320 <expand macro="infile_imzml"/> | |
321 <param name="output_options" value="int_matrix,pixel_tabular,mz_tabular"/> | |
322 <conditional name="counting_calibrants"> | |
323 <param name="pixel_with_calibrants" value="yes_calibrants"/> | |
324 <param name="mz_tabular" value="inputcalibrantfile2.txt"/> | |
325 <param name="feature_column" value="1"/> | |
326 <param name="feature_header" value="False"/> | |
327 <param name="plusminus_ppm" value="200"/> | |
328 </conditional> | |
329 <output name="intensity_matrix" file="int_matrix3.tabular"/> | |
330 <output name="feature_output" file="features_out3.tabular"/> | |
331 <output name="pixel_output" file="pixel_out3.tabular"/> | |
332 </test> | |
333 </tests> | |
334 <help> | |
335 <![CDATA[ | |
336 | |
337 @CARDINAL_DESCRIPTION@ | |
338 | |
339 ----- | |
340 | |
341 This tool provides multiple tabular output options for mass spectrometry imaging data files. | |
342 | |
343 @MSIDATA_INPUT_DESCRIPTION@ | |
344 | |
345 @SPECTRA_TABULAR_INPUT_DESCRIPTION@ | |
346 | |
347 @MZ_TABULAR_INPUT_DESCRIPTION@ | |
348 | |
349 **Output options** | |
350 | |
351 - intensity matrix: m/z in rows, spectra in columns, filled with intensity values | |
352 - spectra output: spectra in rows - for each spectrum: name, x and y coordinates,order, number of peaks (intensities > 0), total ion chromatogram (TIC), highest m/z feature per spectrum, optional count of input m/z per spectrum, optional spectrum annotation | |
353 - mz feature output: m/z in rows - for each m/z: name, m/z, mean, median, standard deviation (sd), standard error of the mean (sem), sum of all intensities per m/z, number of peaks (intensity > 0) per m/z | |
354 - summarized intensities: pixel annotations will be used to group spectra into annotation groups and calculate mean, median and sd of the intensities per group | |
355 | |
356 ]]> | |
357 </help> | |
358 <expand macro="citations"/> | |
359 </tool> |