Mercurial > repos > galaxyp > cardinal_preprocessing
diff preprocessing.xml @ 3:f172efe92629 draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit 2c4a1a862900b4efbc30824cbcb798f835b168b2
author | galaxyp |
---|---|
date | Thu, 28 Feb 2019 09:27:06 -0500 |
parents | 1b875f0b8024 |
children | 141a9288be9c |
line wrap: on
line diff
--- a/preprocessing.xml Fri Feb 15 10:22:14 2019 -0500 +++ b/preprocessing.xml Thu Feb 28 09:27:06 2019 -0500 @@ -60,7 +60,13 @@ maxmz = round(max(mz(msidata)), digits=2) QC_numbers= data.frame(inputdata = c(minmz, maxmz,maxfeatures, pixelcount)) vectorofactions = "inputdata" - plot(msidata, pixel = 1:pixelcount, main="Average spectrum of input file") + ## Choose random spectra for QC plots + random_spectra = sample(pixels(msidata), 4, replace=FALSE) + par(mfrow = c(2, 2), oma=c(0,0,2,0)) + for (random_sample in 1:length(random_spectra)){ + plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} + title("Input spectra", outer=TRUE, line=0) + ############################### Preprocessing steps ########################### ############################################################################### @@ -84,7 +90,10 @@ normalized = c(minmz, maxmz,maxfeatures, pixelcount) QC_numbers= cbind(QC_numbers, normalized) vectorofactions = append(vectorofactions, "normalized") - plot(msidata, pixel = 1:pixelcount, main="Average spectrum after normalization") + par(mfrow = c(2, 2), oma=c(0,0,2,0)) + for (random_sample in 1:length(random_spectra)){ + plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} + title("Spectra after normalization", outer=TRUE, line=0) ############################### Baseline reduction ########################### @@ -103,7 +112,9 @@ baseline = c(minmz, maxmz,maxfeatures, pixelcount) QC_numbers= cbind(QC_numbers, baseline) vectorofactions = append(vectorofactions, "baseline red.") - plot(msidata, pixel = 1:pixelcount, main="Average spectrum after baseline reduction") + for (random_sample in 1:length(random_spectra)){ + plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} + title("Spectra after baseline reduction", outer=TRUE, line=0) ############################### Smoothing ########################### @@ -136,7 +147,9 @@ smoothed = c(minmz, maxmz,maxfeatures, pixelcount) QC_numbers= cbind(QC_numbers, smoothed) vectorofactions = append(vectorofactions, "smoothed") - plot(msidata, pixel = 1:pixelcount, main="Average spectrum after smoothing") + for (random_sample in 1:length(random_spectra)){ + plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} + title("Spectra after smoothing", outer=TRUE, line=0) ############################### Peak picking ########################### @@ -170,7 +183,9 @@ picked = c(minmz, maxmz,maxfeatures, pixelcount) QC_numbers= cbind(QC_numbers, picked) vectorofactions = append(vectorofactions, "picked") - plot(msidata, pixel = 1:pixelcount, main="Average spectrum after peak picking") + for (random_sample in 1:length(random_spectra)){ + plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} + title("Spectra after peak picking", outer=TRUE, line=0) ############################### Peak alignment ########################### @@ -184,8 +199,8 @@ #elif str( $method.methods_conditional.align_ref_type.align_reference_datatype) == 'align_table': - align_reference_table = read.delim("$method.methods_conditional.align_ref_type.mz_tabular", header = $method.methods_conditional.align_ref_type.align_mass_header, stringsAsFactors = FALSE) - align_reference_column = align_reference_table[,$method.methods_conditional.align_ref_type.align_mass_column] + align_reference_table = read.delim("$method.methods_conditional.align_ref_type.mz_tabular", header = $method.methods_conditional.align_ref_type.feature_header, stringsAsFactors = FALSE) + align_reference_column = align_reference_table[,$method.methods_conditional.align_ref_type.feature_column] align_peak_reference = align_reference_column[align_reference_column>=min(mz(msidata)) & align_reference_column<=max(mz(msidata))] if (length(align_peak_reference) == 0) {align_peak_reference = 0} @@ -217,7 +232,9 @@ aligned = c(minmz, maxmz,maxfeatures, pixelcount) QC_numbers= cbind(QC_numbers, aligned) vectorofactions = append(vectorofactions, "aligned") - plot(msidata, pixel = 1:pixelcount, main="Average spectrum after alignment") + for (random_sample in 1:length(random_spectra)){ + plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} + title("Spectra after alignment", outer=TRUE, line=0) ############################### Peak filtering ########################### @@ -235,7 +252,9 @@ filtered = c(minmz, maxmz,maxfeatures, pixelcount) QC_numbers= cbind(QC_numbers, filtered) vectorofactions = append(vectorofactions, "filtered") - plot(msidata, pixel = 1:pixelcount, main="Average spectrum after filtering") + for (random_sample in 1:length(random_spectra)){ + plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} + title("Spectra after filtering", outer=TRUE, line=0) ############################### Data reduction ########################### @@ -266,8 +285,8 @@ #if str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'table': - reference_table = read.delim("$method.methods_conditional.methods_for_reduction.ref_type.mz_tabular", header = $method.methods_conditional.methods_for_reduction.ref_type.mass_header, stringsAsFactors = FALSE) - reference_column = reference_table[,$method.methods_conditional.methods_for_reduction.ref_type.mass_column] + reference_table = read.delim("$method.methods_conditional.methods_for_reduction.ref_type.mz_tabular", header = $method.methods_conditional.methods_for_reduction.ref_type.feature_header, stringsAsFactors = FALSE) + reference_column = reference_table[,$method.methods_conditional.methods_for_reduction.ref_type.feature_column] peak_reference = reference_column[reference_column>min(mz(msidata)) & reference_column<max(mz(msidata))] #elif str( $method.methods_conditional.methods_for_reduction.ref_type.reference_datatype) == 'msidata_ref': @@ -287,7 +306,9 @@ reduced = c(minmz, maxmz,maxfeatures, pixelcount) QC_numbers= cbind(QC_numbers, reduced) vectorofactions = append(vectorofactions, "reduced") - plot(msidata, pixel = 1:pixelcount, main="Average spectrum after data reduction") + for (random_sample in 1:length(random_spectra)){ + plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} + title("Spectra after data reduction", outer=TRUE, line=0) ############################### Transformation ########################### @@ -328,7 +349,9 @@ transformed = c(minmz, maxmz,maxfeatures, pixelcount) QC_numbers= cbind(QC_numbers, transformed) vectorofactions = append(vectorofactions, "transformed") - plot(msidata, pixel = 1:pixelcount, main="Average spectrum after transformation") + for (random_sample in 1:length(random_spectra)){ + plot(msidata, pixel=random_spectra[random_sample], main=paste0("spectrum ", names(random_spectra)[random_sample]))} + title("Spectra after transformation", outer=TRUE, line=0) #end if #end for @@ -340,6 +363,9 @@ #if str($imzml_output) == "imzml_format": if (nrow(msidata) > 0){ + ## make sure that coordinates are integers + coord(msidata)\$y = as.integer(coord(msidata)\$y) + coord(msidata)\$x = as.integer(coord(msidata)\$x) writeImzML(msidata, "out")} #elif str($imzml_output) == "rdata_format": ## save as (.RData) @@ -443,7 +469,7 @@ label="diff.max" help="Peaks that differ less than this value will be aligned together"/> <param name="units_diffalignment" type="select" display="radio" optional="False" label="units"> <option value="ppm" selected="True">ppm</option> - <option value="Da">m/z</option> + <option value="mz">m/z</option> </param> </when> <when value="DP">