Mercurial > repos > galaxyp > cardinal_quality_report
diff quality_report.xml @ 12:ecaebe7c7b54 draft
"planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit 0c667acd7cc0d0ef6c4e979ca29372b8c0d92c23"
author | galaxyp |
---|---|
date | Tue, 06 Oct 2020 08:16:29 +0000 |
parents | f396c176f366 |
children | 23d0394b5908 |
line wrap: on
line diff
--- a/quality_report.xml Sun Sep 27 11:11:53 2020 +0000 +++ b/quality_report.xml Tue Oct 06 08:16:29 2020 +0000 @@ -1,4 +1,4 @@ -<tool id="cardinal_quality_report" name="MSI Qualitycontrol" version="@VERSION@.0"> +<tool id="cardinal_quality_report" name="MSI Qualitycontrol" version="@VERSION@.1"> <description> mass spectrometry imaging QC </description> @@ -67,7 +67,6 @@ ###################### calculation of data properties ################################ @DATA_PROPERTIES_INRAM@ - ## Median intensities medint = round(median(int_matrix), digits=2) ## Spectra multiplied with m/z (potential number of peaks) @@ -83,6 +82,8 @@ ## Median and sd # peaks per spectrum medpeaks = round(median(colSums(spectra(msidata)>0, na.rm=TRUE), na.rm=TRUE), digits=0) sdpeaks = round(sd(colSums(spectra(msidata)>0, na.rm=TRUE), na.rm=TRUE), digits=0) +##max window size +max_window = round(mz(msidata)[nrow(msidata)]-mz(msidata)[nrow(msidata)-1], digits=2) ## Processing informations centroidedinfo = centroided(msidata) @@ -138,6 +139,7 @@ "Number of empty spectra", "Median TIC ± sd", "Median # peaks per spectrum ± sd", + "maximum m/z window size", "Centroided", paste0("input m/z (#valid/#input) in \n", "$calibrant_file.display_name")) @@ -146,6 +148,7 @@ paste0(NumemptyTIC), paste0(medTIC, " ± ", sdTIC), paste0(medpeaks, " ± ",sdpeaks), + paste0(max_window), paste0(centroidedinfo), paste0(number_calibrants_valid, " / ", number_calibrants_in)) @@ -222,7 +225,7 @@ pixelxyarray=data.frame(coord(msidata)\$x, coord(msidata)\$y,pixelnumber) colnames(pixelxyarray) = c("x", "y", "pixelnumber") gg_title = "Pixel order" - + print(ggplot(pixelxyarray, aes(x=x, y=y, fill=pixelnumber))+ geom_tile() + coord_fixed()+ ggtitle(gg_title) + theme_bw()+ @@ -755,6 +758,7 @@ if (length(inputcalibrantmasses) != 0){ + ### calculate plusminus values in m/z for each calibrant, this is used for all following plots plusminusvalues = rep($plusminus_ppm/1000000, length(inputcalibrantmasses)) * inputcalibrantmasses @@ -767,6 +771,17 @@ maxmasspixel2 = features(msidata_no_NA, mz=inputcalibrantmasses[mass]+0.5) minmasspixel3 = features(msidata_no_NA, mz=inputcalibrantmasses[mass]-1.5) maxmasspixel3 = features(msidata_no_NA, mz=inputcalibrantmasses[mass]+3) + + ## test if some values are lower than min(mz) + minmasspixel1 = ifelse(length(minmasspixel1)>0, minmasspixel1, 1) + minmasspixel2 = ifelse(length(minmasspixel2)>0, minmasspixel2, 1) + minmasspixel3 = ifelse(length(minmasspixel3)>0, minmasspixel3, 1) + + ## test if min and max are same (more likely for centroided data): + maxmasspixel1 = ifelse(minmasspixel1 != maxmasspixel1, maxmasspixel1, maxmasspixel1 + 1) + maxmasspixel2 = ifelse(minmasspixel2 != maxmasspixel2, maxmasspixel2, maxmasspixel1 + 1) + maxmasspixel3 = ifelse(minmasspixel3 != maxmasspixel3, maxmasspixel3, maxmasspixel1 + 1) + ### find m/z with the highest mean intensity in m/z range (red line in plot 16) and calculate ppm difference for plot 17 filtered_data = msidata_no_NA[mz(msidata_no_NA) >= inputcalibrantmasses[mass]-plusminusvalues[mass] & mz(msidata_no_NA) <= inputcalibrantmasses[mass]+plusminusvalues[mass],] @@ -837,8 +852,10 @@ ### plot the ppm difference calculated above: theor. m/z value to highest m/z value: calibrant_names = as.character(inputcalibrants[,2]) + diff_df = data.frame(differencevector, calibrant_names) + if (sum(is.na(diff_df[,1])) == nrow(diff_df)){ plot(0,type='n',axes=FALSE,ann=FALSE) title(main=paste("plot 17: no peaks in the chosen region, repeat with higher ppm range"))