# HG changeset patch
# User galaxyp
# Date 1630222221 0
# Node ID 23d0394b59082f1ef47ab2566921a323ae0941d7
# Parent 5a35e3a8d0138cf167b79b9305ab348bb1ca5743
"planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit c8d3adac445b4e08e2724e22d7201bfc38bbf40f"
diff -r 5a35e3a8d013 -r 23d0394b5908 macros.xml
--- a/macros.xml Wed Dec 23 22:36:04 2020 +0000
+++ b/macros.xml Sun Aug 29 07:30:21 2021 +0000
@@ -1,5 +1,5 @@
- 2.6.0
+ 2.10.0
diff -r 5a35e3a8d013 -r 23d0394b5908 quality_report.xml
--- a/quality_report.xml Wed Dec 23 22:36:04 2020 +0000
+++ b/quality_report.xml Sun Aug 29 07:30:21 2021 +0000
@@ -1,4 +1,4 @@
-
+
mass spectrometry imaging QC
@@ -7,9 +7,9 @@
r-gridextra
- r-ggplot2
+ r-ggplot2
r-rcolorbrewer
- r-kernsmooth
+ r-kernsmooth
r-scales
r-pheatmap
@@ -359,24 +359,29 @@
#end if
#################### 4) m/z heatmaps #######################################
- par(mfrow=c(1,1), mar=c(5.1, 4.1, 4.1, 2.1), mgp=c(3, 1, 0), las=0)
- if (length(inputcalibrants[,1]) != 0){
- for (mass in 1:length(inputcalibrants[,1])){
- par(oma=c(0,0,0,1))## margin for image legend
+
+ #if $report_depth:
+
+ par(mfrow=c(1,1), mar=c(5.1, 4.1, 4.1, 2.1), mgp=c(3, 1, 0), las=0)
+ if (length(inputcalibrants[,1]) != 0){
+ for (mass in 1:length(inputcalibrants[,1])){
+ par(oma=c(0,0,0,1))## margin for image legend
- tryCatch(
- {
- print(image(msidata, mz=inputcalibrants[,1][mass], plusminus=plusminusvalues[mass],
- main= paste0(inputcalibrants[,2][mass], ": ", round(inputcalibrants[,1][mass], digits = 2)," (±",$plusminus_ppm, " ppm)"),
- contrast.enhance = "histogram", strip=FALSE, ylim= c(maximumy,minimumy)))
- },
- error=function(cond) {
- ## if there are not enough intensities in the mz range skip creating an image
- print(paste0("Not enough intensities > 0 for m/z ", inputcalibrants[,1][mass]))
- }
- )
- }
- } else {print("4) The input peptide and calibrant m/z were not provided or outside the m/z range")}
+ tryCatch(
+ {
+ print(image(msidata, mz=inputcalibrants[,1][mass], plusminus=plusminusvalues[mass],
+ main= paste0(inputcalibrants[,2][mass], ": ", round(inputcalibrants[,1][mass], digits = 2)," (±",$plusminus_ppm, " ppm)"),
+ contrast.enhance = "histogram", strip=FALSE, ylim= c(maximumy,minimumy)))
+ },
+ error=function(cond) {
+ ## if there are not enough intensities in the mz range skip creating an image
+ print(paste0("Not enough intensities > 0 for m/z ", inputcalibrants[,1][mass]))
+ }
+ )
+ }
+ } else {print("4) The input peptide and calibrant m/z were not provided or outside the m/z range")}
+
+ #end if
#################### 5) Number of peaks per pixel - image ##################
@@ -419,72 +424,75 @@
############################### 6b) median int image ###############################
- median_int = pixelApply(msidata, median, na.rm=TRUE)
+ #if $report_depth:
+
+ median_int = pixelApply(msidata, median, na.rm=TRUE)
- median_coordarray=data.frame(coord(msidata)\$x, coord(msidata)\$y, median_int)
- colnames(median_coordarray) = c("x", "y", "median_int")
- print(ggplot(median_coordarray, aes(x=x, y=y, fill=median_int))+
- geom_tile() + coord_fixed() +
- ggtitle("Median intensity per spectrum")+
- theme_bw() +
- theme(plot.title = element_text(hjust = 0.5))+
- theme(text=element_text(family="ArialMT", face="bold", size=12))+
- scale_fill_gradientn(colours = c("blue", "purple" , "red","orange")
- ,space = "Lab", na.value = "black", name = "median\nintensity"))
+ median_coordarray=data.frame(coord(msidata)\$x, coord(msidata)\$y, median_int)
+ colnames(median_coordarray) = c("x", "y", "median_int")
+ print(ggplot(median_coordarray, aes(x=x, y=y, fill=median_int))+
+ geom_tile() + coord_fixed() +
+ ggtitle("Median intensity per spectrum")+
+ theme_bw() +
+ theme(plot.title = element_text(hjust = 0.5))+
+ theme(text=element_text(family="ArialMT", face="bold", size=12))+
+ scale_fill_gradientn(colours = c("blue", "purple" , "red","orange")
+ ,space = "Lab", na.value = "black", name = "median\nintensity"))
- ## remove median_coordarray to clean up RAM space
- rm(median_coordarray)
- gc()
+ ## remove median_coordarray to clean up RAM space
+ rm(median_coordarray)
+ gc()
- ############################### 6c) max int image ###############################
-
- max_int = pixelApply(msidata, max, na.rm=TRUE)
+ ############################### 6c) max int image ###############################
+
+ max_int = pixelApply(msidata, max, na.rm=TRUE)
- max_coordarray=data.frame(coord(msidata)\$x, coord(msidata)\$y, max_int)
- colnames(max_coordarray) = c("x", "y", "max_int")
- print(ggplot(max_coordarray, aes(x=x, y=y, fill=max_int))+
- geom_tile() + coord_fixed() +
- ggtitle("Maximum intensity per spectrum")+
- theme_bw() +
- theme(plot.title = element_text(hjust = 0.5))+
- theme(text=element_text(family="ArialMT", face="bold", size=12))+
- scale_fill_gradientn(colours = c("blue", "purple" , "red","orange")
- ,space = "Lab", na.value = "black", name = "max\nintensity"))
+ max_coordarray=data.frame(coord(msidata)\$x, coord(msidata)\$y, max_int)
+ colnames(max_coordarray) = c("x", "y", "max_int")
+ print(ggplot(max_coordarray, aes(x=x, y=y, fill=max_int))+
+ geom_tile() + coord_fixed() +
+ ggtitle("Maximum intensity per spectrum")+
+ theme_bw() +
+ theme(plot.title = element_text(hjust = 0.5))+
+ theme(text=element_text(family="ArialMT", face="bold", size=12))+
+ scale_fill_gradientn(colours = c("blue", "purple" , "red","orange")
+ ,space = "Lab", na.value = "black", name = "max\nintensity"))
- ## remove median_coordarray to clean up RAM space
- rm(max_coordarray)
- gc()
+ ## remove median_coordarray to clean up RAM space
+ rm(max_coordarray)
+ gc()
+
+ ############################### 7) Most abundant m/z image #################
+
+ ## for each spectrum find the row (m/z) with the highest intensity
+ highestmz = pixelApply(msidata, which.max)
- ############################### 7) Most abundant m/z image #################
-
- ## for each spectrum find the row (m/z) with the highest intensity
- highestmz = pixelApply(msidata, which.max)
+ ## in case for some spectra max returns integer(0), highestmz is a list and integer(0) have to be replaced with NA and unlisted
+ if (class(highestmz) == "list"){
+ ##find zero-length values
+ zero_entry <- !(sapply(highestmz, length))
+ ### replace these values with NA
+ highestmz[zero_entry] <- NA
+ ### unlist list to get a vector
+ highestmz = unlist(highestmz)}
- ## in case for some spectra max returns integer(0), highestmz is a list and integer(0) have to be replaced with NA and unlisted
- if (class(highestmz) == "list"){
- ##find zero-length values
- zero_entry <- !(sapply(highestmz, length))
- ### replace these values with NA
- highestmz[zero_entry] <- NA
- ### unlist list to get a vector
- highestmz = unlist(highestmz)}
-
- highestmz_matrix = data.frame(coord(msidata)\$x, coord(msidata)\$y,mz(msidata)[highestmz])
- colnames(highestmz_matrix) = c("x", "y", "highestmzinDa")
+ highestmz_matrix = data.frame(coord(msidata)\$x, coord(msidata)\$y,mz(msidata)[highestmz])
+ colnames(highestmz_matrix) = c("x", "y", "highestmzinDa")
- print(ggplot(highestmz_matrix, aes(x=x, y=y, fill=highestmzinDa))+
- geom_tile() + coord_fixed() +
- ggtitle("Most abundant m/z in each spectrum")+
- theme_bw() +
- theme(plot.title = element_text(hjust = 0.5))+
- scale_fill_gradientn(colours = c("blue", "purple" , "red","orange"), space = "Lab", na.value = "black", name = "m/z",
- limits=c(min(highestmz_matrix\$highestmzinDa), max(highestmz_matrix\$highestmzinDa)))+
- theme(text=element_text(family="ArialMT", face="bold", size=12)))
+ print(ggplot(highestmz_matrix, aes(x=x, y=y, fill=highestmzinDa))+
+ geom_tile() + coord_fixed() +
+ ggtitle("Most abundant m/z in each spectrum")+
+ theme_bw() +
+ theme(plot.title = element_text(hjust = 0.5))+
+ scale_fill_gradientn(colours = c("blue", "purple" , "red","orange"), space = "Lab", na.value = "black", name = "m/z",
+ limits=c(min(highestmz_matrix\$highestmzinDa), max(highestmz_matrix\$highestmzinDa)))+
+ theme(text=element_text(family="ArialMT", face="bold", size=12)))
- ## remove highestmz_matrix to clean up RAM space
- rm(highestmz_matrix)
- gc()
+ ## remove highestmz_matrix to clean up RAM space
+ rm(highestmz_matrix)
+ gc()
+ #end if
########################## 8) optional pca image for two components #################
@@ -513,38 +521,44 @@
########################## 9) number of peaks per spectrum #################
## 9a) scatterplot
+
+ #if $report_depth:
- plot_colorByDensity(pixels(msidata), peaksperpixel, ylab = "", xlab = "", main="Number of peaks per spectrum")
- title(xlab="Spectra index", line=3)
- title(ylab="Number of peaks", line=4)
+ plot_colorByDensity(pixels(msidata), peaksperpixel, ylab = "", xlab = "", main="Number of peaks per spectrum")
+ title(xlab="Spectra index", line=3)
+ title(ylab="Number of peaks", line=4)
- if (!is.null(unique(msidata\$annotation))){
- abline(v=abline_vector, lty = 3)}
-
- ## 9b) histogram
+ if (!is.null(unique(msidata\$annotation))){
+ abline(v=abline_vector, lty = 3)}
+
+ ## 9b) histogram
+
- hist(peaksperpixel, main="", las=1, xlab = "Number of peaks per spectrum", ylab="")
- title(main="Number of peaks per spectrum", line=2)
- title(ylab="Frequency = # spectra", line=4)
- abline(v=median(peaksperpixel), col="blue")
+
+ hist(peaksperpixel, main="", las=1, xlab = "Number of peaks per spectrum", ylab="")
+ title(main="Number of peaks per spectrum", line=2)
+ title(ylab="Frequency = # spectra", line=4)
+ abline(v=median(peaksperpixel), col="blue")
- ## 9c) additional histogram to show contribution of annotation groups
+ ## 9c) additional histogram to show contribution of annotation groups
- if (!is.null(unique(msidata\$annotation))){
+ if (!is.null(unique(msidata\$annotation))){
- df_9 = data.frame(peaksperpixel, msidata\$annotation)
- colnames(df_9) = c("Npeaks", "annotation")
-
- hist_9 = ggplot(df_9, aes(x=Npeaks, fill=annotation)) +
- geom_histogram()+ theme_bw()+
- theme(text=element_text(family="ArialMT", face="bold", size=12))+
- theme(plot.title = element_text(hjust = 0.5))+
- theme(legend.key.size = unit(0.2, "line"), legend.text = element_text(size = 8))+
- theme(legend.position="bottom",legend.direction="vertical")+
- labs(title="Number of peaks per spectrum and annotation group", x="Number of peaks per spectrum", y = "Frequency = # spectra") +
- guides(fill=guide_legend(ncol=5,byrow=TRUE))+
- geom_vline(xintercept = median(peaksperpixel), size = 1, colour = "black",linetype = "dashed")
- print(hist_9)}
+ df_9 = data.frame(peaksperpixel, msidata\$annotation)
+ colnames(df_9) = c("Npeaks", "annotation")
+
+ hist_9 = ggplot(df_9, aes(x=Npeaks, fill=annotation)) +
+ geom_histogram()+ theme_bw()+
+ theme(text=element_text(family="ArialMT", face="bold", size=12))+
+ theme(plot.title = element_text(hjust = 0.5))+
+ theme(legend.key.size = unit(0.2, "line"), legend.text = element_text(size = 8))+
+ theme(legend.position="bottom",legend.direction="vertical")+
+ labs(title="Number of peaks per spectrum and annotation group", x="Number of peaks per spectrum", y = "Frequency = # spectra") +
+ guides(fill=guide_legend(ncol=5,byrow=TRUE))+
+ geom_vline(xintercept = median(peaksperpixel), size = 1, colour = "black",linetype = "dashed")
+ print(hist_9)}
+
+ #end if
########################## 10) TIC per spectrum ###########################
@@ -596,61 +610,64 @@
########################## 12) Number of peaks per m/z #####################
- peakspermz = rowSums(spectra(msidata) > 0, na.rm=TRUE)
+ #if $report_depth:
+
+ peakspermz = rowSums(spectra(msidata) > 0, na.rm=TRUE)
- par(mfrow = c(2,1), mar=c(5,6,4,4.5))
- ## 12a) scatterplot
- plot_colorByDensity(mz(msidata),peakspermz, main= "Number of peaks per m/z", ylab ="")
- title(xlab="m/z", line=2.5)
- title(ylab = "Number of peaks", line=4)
- axis(4, at=pretty(peakspermz),labels=as.character(round((pretty(peakspermz)/pixelcount*100), digits=1)), las=1)
- mtext("Coverage of spectra [%]", 4, line=3, adj=1)
+ par(mfrow = c(2,1), mar=c(5,6,4,4.5))
+ ## 12a) scatterplot
+ plot_colorByDensity(mz(msidata),peakspermz, main= "Number of peaks per m/z", ylab ="")
+ title(xlab="m/z", line=2.5)
+ title(ylab = "Number of peaks", line=4)
+ axis(4, at=pretty(peakspermz),labels=as.character(round((pretty(peakspermz)/pixelcount*100), digits=1)), las=1)
+ mtext("Coverage of spectra [%]", 4, line=3, adj=1)
- ## 12b) histogram
- hist(peakspermz, main="", las=1, ylab="", xlab="")
- title(ylab = "Frequency", line=4)
- title(main="Number of peaks per m/z", xlab = "Number of peaks per m/z", line=2)
- abline(v=median(peakspermz), col="blue")
+ ## 12b) histogram
+ hist(peakspermz, main="", las=1, ylab="", xlab="")
+ title(ylab = "Frequency", line=4)
+ title(main="Number of peaks per m/z", xlab = "Number of peaks per m/z", line=2)
+ abline(v=median(peakspermz), col="blue")
- ########################## 13) Sum of intensities per m/z ##################
+ ########################## 13) Sum of intensities per m/z ##################
- ## Sum of all intensities for each m/z (like TIC, but for m/z instead of pixel)
- mzTIC = featureApply(msidata, sum, na.rm=TRUE) ## calculate intensity sum for each m/z
+ ## Sum of all intensities for each m/z (like TIC, but for m/z instead of pixel)
+ mzTIC = featureApply(msidata, sum, na.rm=TRUE) ## calculate intensity sum for each m/z
- par(mfrow = c(2,1), mar=c(5,6,4,2))
- ## 13a) scatterplot
- plot_colorByDensity(mz(msidata),mzTIC, main= "Sum of intensities per m/z", ylab ="")
- title(xlab="m/z", line=2.5)
- title(ylab="Intensity sum", line=4)
+ par(mfrow = c(2,1), mar=c(5,6,4,2))
+ ## 13a) scatterplot
+ plot_colorByDensity(mz(msidata),mzTIC, main= "Sum of intensities per m/z", ylab ="")
+ title(xlab="m/z", line=2.5)
+ title(ylab="Intensity sum", line=4)
- ## 13b) histogram
- hist(mzTIC, main="", xlab = "", las=1, ylab="")
- title(main="Sum of intensities per m/z", line=2, ylab="")
- title(xlab = "sum of intensities per m/z")
- title(ylab = "Frequency", line=4)
- abline(v=median(mzTIC[mzTIC>0]), col="blue")
+ ## 13b) histogram
+ hist(mzTIC, main="", xlab = "", las=1, ylab="")
+ title(main="Sum of intensities per m/z", line=2, ylab="")
+ title(xlab = "sum of intensities per m/z")
+ title(ylab = "Frequency", line=4)
+ abline(v=median(mzTIC[mzTIC>0]), col="blue")
- ################################## V) intensity plots ########################
- ############################################################################
- print("intensity plots")
- ########################## 14) Intensity distribution ######################
+ ################################## V) intensity plots ########################
+ ############################################################################
+ print("intensity plots")
+ ########################## 14) Intensity distribution ######################
- par(mfrow = c(2,1), mar=c(5,6,4,2))
+ par(mfrow = c(2,1), mar=c(5,6,4,2))
- ## 14a) Median intensity over spectra
- medianint_spectra = pixelApply(msidata, median, na.rm=TRUE)
- plot(medianint_spectra, main="Median intensity per spectrum",las=1, xlab="Spectra index", ylab="")
- title(ylab="Median spectrum intensity", line=4)
- if (!is.null(unique(msidata\$annotation))){
- abline(v=abline_vector, lty = 3)}
+ ## 14a) Median intensity over spectra
+ medianint_spectra = pixelApply(msidata, median, na.rm=TRUE)
+ plot(medianint_spectra, main="Median intensity per spectrum",las=1, xlab="Spectra index", ylab="")
+ title(ylab="Median spectrum intensity", line=4)
+ if (!is.null(unique(msidata\$annotation))){
+ abline(v=abline_vector, lty = 3)}
- ## 14b) histogram:
- hist(int_matrix, main="", xlab = "", ylab="", las=1)
- title(main="Intensity histogram", line=2)
- title(xlab="intensities")
- title(ylab="Frequency", line=4)
- abline(v=median(int_matrix)[(as.matrix(spectra(msidata))>0)], col="blue")
+ ## 14b) histogram:
+ hist(int_matrix, main="", xlab = "", ylab="", las=1)
+ title(main="Intensity histogram", line=2)
+ title(xlab="intensities")
+ title(ylab="Frequency", line=4)
+ abline(v=median(int_matrix)[(as.matrix(spectra(msidata))>0)], col="blue")
+ #end if
## 14c) histogram to show contribution of annotation groups
@@ -719,36 +736,40 @@
############################ 15) Mass spectra ##############################
+
## replace any NA with 0, otherwise plot function will not work at all
msidata_no_NA = msidata
+
+ #if $report_depth:
- ## find three equal m/z ranges for the average mass spectra plots:
- third_mz_range = round(nrow(msidata_no_NA)/3,0)
+ ## find three equal m/z ranges for the average mass spectra plots:
+ third_mz_range = round(nrow(msidata_no_NA)/3,0)
- par(cex.axis=1, cex.lab=1, mar=c(5.1,4.1,4.1,2.1))
- print(plot(msidata_no_NA, run="infile", layout=c(2,2), strip=FALSE, main= "Average spectrum", col="black"))
- print(plot(msidata_no_NA[1:third_mz_range,], layout=FALSE, run="infile", strip=FALSE, main="Zoomed average spectrum", col="black"))
- print(plot(msidata_no_NA[third_mz_range:(2*third_mz_range),], layout=FALSE, run="infile", strip=FALSE, main="Zoomed average spectrum", col="black"))
- print(plot(msidata_no_NA[(2*third_mz_range):nrow(msidata_no_NA),], layout=FALSE, run="infile", strip=FALSE, main="Zoomed average spectrum", col="black"))
+ par(cex.axis=1, cex.lab=1, mar=c(5.1,4.1,4.1,2.1))
+ print(plot(msidata_no_NA, run="infile", layout=c(2,2), strip=FALSE, main= "Average spectrum", col="black"))
+ print(plot(msidata_no_NA[1:third_mz_range,], layout=FALSE, run="infile", strip=FALSE, main="Zoomed average spectrum", col="black"))
+ print(plot(msidata_no_NA[third_mz_range:(2*third_mz_range),], layout=FALSE, run="infile", strip=FALSE, main="Zoomed average spectrum", col="black"))
+ print(plot(msidata_no_NA[(2*third_mz_range):nrow(msidata_no_NA),], layout=FALSE, run="infile", strip=FALSE, main="Zoomed average spectrum", col="black"))
- ## plot one average mass spectrum for each pixel annotation group
+ ## plot one average mass spectrum for each pixel annotation group
- if (!is.null(unique(msidata\$annotation))){
- ## print legend only for less than 10 samples
- if (length(unique(msidata\$annotation)) < 10){
- key_legend = TRUE
- }else{key_legend = FALSE}
- par(mfrow = c(1,1), cex.axis=1, cex.lab=1, mar=c(5.1,4.1,4.1,2.1))
- print(plot(msidata, run="infile", pixel.groups=msidata\$annotation, key=key_legend, col=hue_pal()(length(unique(msidata\$annotation))),superpose=TRUE, main="Average mass spectra for annotation groups"))
- }
+ if (!is.null(unique(msidata\$annotation))){
+ ## print legend only for less than 10 samples
+ if (length(unique(msidata\$annotation)) < 10){
+ key_legend = TRUE
+ }else{key_legend = FALSE}
+ par(mfrow = c(1,1), cex.axis=1, cex.lab=1, mar=c(5.1,4.1,4.1,2.1))
+ print(plot(msidata, run="infile", pixel.groups=msidata\$annotation, key=key_legend, col=hue_pal()(length(unique(msidata\$annotation))),superpose=TRUE, main="Average mass spectra for annotation groups"))
+ }
- ## plot 4 random mass spectra
- ## find four random, not empty pixel to plot their spectra in the following plots:
- pixel_vector = sample(which(TICs != 0),4)
+ ## plot 4 random mass spectra
+ ## find four random, not empty pixel to plot their spectra in the following plots:
+ pixel_vector = sample(which(TICs != 0),4)
- par(mfrow = c(2, 2), cex.axis=1, cex.lab=1, mar=c(5.1,4.1,4.1,2.1))
- print(plot(msidata_no_NA, pixel = pixel_vector, col="black"))
+ par(mfrow = c(2, 2), cex.axis=1, cex.lab=1, mar=c(5.1,4.1,4.1,2.1))
+ print(plot(msidata_no_NA, pixel = pixel_vector, col="black"))
+ #end if
################### 16) Zoomed in mass spectra for calibrants ##############
@@ -848,6 +869,8 @@
######### 17) ppm difference input calibrant m/z and m/z with max intensity in given m/z range#########
+ #if $report_depth:
+
par(mfrow = c(1,1))
### plot the ppm difference calculated above: theor. m/z value to highest m/z value:
@@ -885,6 +908,8 @@
theme(axis.text.x = element_text(angle = 90, hjust = 1, size=14))
print(diff_plot2)
+
+ #end if
#################### 19) ppm difference over pixels #####################
@@ -934,6 +959,7 @@
### make x-y-images for mz accuracy
+ #if $report_depth:
ppm_dataframe = data.frame(coord(msidata)\$x, coord(msidata)\$y, ppm_df)
colnames(ppm_dataframe) = c("x", "y", "ppm_df")
@@ -950,6 +976,7 @@
theme(text=element_text(family="ArialMT", face="bold", size=12))+
scale_fill_gradient2(low = "navy", mid = "grey", high = "red", midpoint = 0 ,space = "Lab", na.value = "black", name = "ppm\nerror"))}
+ #end if
}else{print("plot 16+17+18+19) The inputcalibrant m/z were not provided or outside the m/z range")}
}else{
@@ -976,6 +1003,7 @@
+
@@ -1021,7 +1049,6 @@
-
@@ -1031,7 +1058,6 @@
-
@@ -1062,6 +1088,25 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
-
-
+
+
@@ -42,7 +42,7 @@
-
+
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/preprocessing_results4.imzml.txt
--- a/test-data/preprocessing_results4.imzml.txt Wed Dec 23 22:36:04 2020 +0000
+++ b/test-data/preprocessing_results4.imzml.txt Sun Aug 29 07:30:21 2021 +0000
@@ -1,4 +1,4 @@
imzML file:
total 84
--rw-rw-r-- 1 meli meli 62696 Oct 5 19:58 ibd
--rw-rw-r-- 1 meli meli 18199 Oct 5 19:58 imzml
+-rw-rw-r-- 1 meli meli 62696 Aug 28 16:41 ibd
+-rw-rw-r-- 1 meli meli 18200 Aug 28 16:41 imzml
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/preprocessing_results4.pdf
Binary file test-data/preprocessing_results4.pdf has changed
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/test1.pdf
Binary file test-data/test1.pdf has changed
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/test2.pdf
Binary file test-data/test2.pdf has changed
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/test3.pdf
Binary file test-data/test3.pdf has changed
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/test4.pdf
Binary file test-data/test4.pdf has changed
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/test5.pdf
Binary file test-data/test5.pdf has changed
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/test6.pdf
Binary file test-data/test6.pdf has changed
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/test6.rdata
Binary file test-data/test6.rdata has changed
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/test7.pdf
Binary file test-data/test7.pdf has changed
diff -r 5a35e3a8d013 -r 23d0394b5908 test-data/test7.rdata
Binary file test-data/test7.rdata has changed