Mercurial > repos > galaxyp > cardinal_segmentations
comparison segmentation.xml @ 2:034885df9b09 draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit f127be2141cf22e269c85282d226eb16fe14a9c1
author | galaxyp |
---|---|
date | Fri, 15 Feb 2019 10:16:36 -0500 |
parents | 98d48f081ad9 |
children | 09b638ceee45 |
comparison
equal
deleted
inserted
replaced
1:98d48f081ad9 | 2:034885df9b09 |
---|---|
1 <tool id="cardinal_segmentations" name="MSI segmentation" version="@VERSION@.1"> | 1 <tool id="cardinal_segmentations" name="MSI segmentation" version="@VERSION@.2"> |
2 <description>mass spectrometry imaging spatial clustering</description> | 2 <description>mass spectrometry imaging spatial clustering</description> |
3 <macros> | 3 <macros> |
4 <import>macros.xml</import> | 4 <import>macros.xml</import> |
5 </macros> | 5 </macros> |
6 <expand macro="requirements"> | 6 <expand macro="requirements"> |
24 | 24 |
25 library(Cardinal) | 25 library(Cardinal) |
26 library(gridExtra) | 26 library(gridExtra) |
27 library(lattice) | 27 library(lattice) |
28 | 28 |
29 @READING_MSIDATA@ | 29 |
30 | 30 |
31 | 31 @READING_MSIDATA_INRAM@ |
32 ## create full matrix to make processed imzML files compatible with segmentation | 32 |
33 iData(msidata) <- iData(msidata)[] | 33 ## to make sure that processed files work as well: |
34 | 34 iData(msidata) = iData(msidata)[] |
35 @DATA_PROPERTIES@ | 35 |
36 ## count and print number of NAs, all methods are not compatible with NAs | |
37 print(paste0("Number of NA in dataset: ", sum(is.na(spectra(msidata)[])), " - segmentation does not work with NA values")) | |
38 | |
39 @DATA_PROPERTIES_INRAM@ | |
40 | |
36 | 41 |
37 ######################################## PDF ################################### | 42 ######################################## PDF ################################### |
38 ################################################################################ | 43 ################################################################################ |
39 ################################################################################ | 44 ################################################################################ |
40 | 45 |
47 | 52 |
48 ############################# I) numbers #################################### | 53 ############################# I) numbers #################################### |
49 ############################################################################# | 54 ############################################################################# |
50 grid.table(property_df, rows= NULL) | 55 grid.table(property_df, rows= NULL) |
51 | 56 |
52 if (npeaks > 0) | 57 if (npeaks > 0 && sum(is.na(spectra(msidata)[]))==0) |
53 { | 58 { |
54 | 59 |
55 ######################## II) segmentation tools ############################# | 60 ######################## II) segmentation tools ############################# |
56 ############################################################################# | 61 ############################################################################# |
57 #set $color_string = ','.join(['"%s"' % $color.feature_color for $color in $colours]) | 62 #set $color_string = ','.join(['"%s"' % $color.feature_color for $color in $colours]) |
79 print('pca') | 84 print('pca') |
80 ##pca | 85 ##pca |
81 | 86 |
82 component_vector = character() | 87 component_vector = character() |
83 for (numberofcomponents in 1:$segm_cond.pca_ncomp) | 88 for (numberofcomponents in 1:$segm_cond.pca_ncomp) |
84 {component_vector[numberofcomponents]= paste0("PC", numberofcomponents)} | 89 {component_vector[numberofcomponents]= paste0("PC", numberofcomponents)} |
90 | |
85 pca_result = PCA(msidata, ncomp=$segm_cond.pca_ncomp, column = component_vector, superpose = FALSE, | 91 pca_result = PCA(msidata, ncomp=$segm_cond.pca_ncomp, column = component_vector, superpose = FALSE, |
86 method = "$segm_cond.pca_method", scale = $segm_cond.pca_scale, layout = c(ncomp, 1)) | 92 method = "$segm_cond.pca_method", scale = $segm_cond.pca_scale, layout = c(ncomp, 1)) |
87 | 93 |
94 ## remove msidata to clean up RAM space | |
95 rm(msidata) | |
96 gc() | |
97 | |
98 ### table in pdf file | |
99 plot(0,type='n',axes=FALSE,ann=FALSE) | |
100 sd_table = as.data.frame(round(pca_result@resultData\$ncomp\$sdev, digits=2)) | |
101 colnames(sd_table) = "Standard deviation" | |
102 PC_vector = character() | |
103 for (PCs in 1:$segm_cond.pca_ncomp){ | |
104 PC_vector[[PCs]] = c(paste0("PC",PCs))} | |
105 sd_table = cbind(PC_vector, sd_table) | |
106 colnames(sd_table)[1] = "Principal components" | |
107 grid.table(sd_table, rows=NULL) | |
88 ### images in pdf file | 108 ### images in pdf file |
89 print(image(pca_result, main="PCA image", lattice=lattice_input, strip = strip_input, col=colourvector, ylim=c(maximumy+2, minimumy-2))) | 109 print(image(pca_result, main="PCA image", lattice=lattice_input, strip = strip_input, col=colourvector, ylim=c(maximumy+2, minimumy-2))) |
90 for (PCs in 1:$segm_cond.pca_ncomp){ | 110 for (PCs in 1:$segm_cond.pca_ncomp){ |
91 print(image(pca_result, column = c(paste0("PC",PCs)), lattice=lattice_input, superpose = FALSE, col.regions = risk.colors(100), ylim=c(maximumy+2, minimumy-2)))} | 111 print(image(pca_result, column = c(paste0("PC",PCs)), lattice=lattice_input, superpose = FALSE, col.regions = risk.colors(100), ylim=c(maximumy+2, minimumy-2)))} |
92 ### plots in pdf file | 112 ### plots in pdf file |
93 print(plot(pca_result, main="PCA plot", lattice=lattice_input, col= colourvector, strip = strip_input)) | 113 print(plot(pca_result, main="PCA plot", lattice=lattice_input, col= colourvector, strip = strip_input)) |
94 for (PCs in 1:$segm_cond.pca_ncomp){ | 114 for (PCs in 1:$segm_cond.pca_ncomp){ |
95 print(plot(pca_result, column = c(paste0("PC",PCs)),superpose = FALSE))} | 115 print(plot(pca_result, column = c(paste0("PC",PCs)),superpose = FALSE))} |
96 | 116 |
97 ### values in tabular files | 117 ### values in tabular files |
98 pcaloadings = (pca_result@resultData\$ncomp\$loadings) ### loading for each m/z value | 118 pcaloadings = formatC(pca_result@resultData\$ncomp\$loadings, format = "e", digits = 6)### loading for each m/z value |
99 pcaloadings2 = cbind(matrix(unlist(strsplit(rownames(pcaloadings), " = ")), ncol=2, byrow=TRUE)[,2], pcaloadings) | 119 pcaloadings2 = cbind(matrix(unlist(strsplit(rownames(pcaloadings), " = ")), ncol=2, byrow=TRUE)[,2], pcaloadings) |
100 colnames(pcaloadings2) = c("mz", colnames(pcaloadings)) | 120 colnames(pcaloadings2) = c("mz", colnames(pcaloadings)) |
101 pcascores = (pca_result@resultData\$ncomp\$scores) ### scores for each pixel | 121 pcascores = round(pca_result@resultData\$ncomp\$scores, digits=6) ### scores for each pixel |
102 | 122 |
103 ## pixel names and coordinates | 123 ## pixel names and coordinates |
104 ## to remove potential sample names and z dimension, split at comma and take only x and y | 124 ## to remove potential sample names and z dimension, split at comma and take only x and y |
105 x_coords = unlist(lapply(strsplit(rownames(pcascores), ","), `[[`, 1)) | 125 x_coords = unlist(lapply(strsplit(rownames(pcascores), ","), `[[`, 1)) |
106 y_coords = unlist(lapply(strsplit(rownames(pcascores), ","), `[[`, 2)) | 126 y_coords = unlist(lapply(strsplit(rownames(pcascores), ","), `[[`, 2)) |
123 #elif str( $segm_cond.segmentationtool ) == 'kmeans': | 143 #elif str( $segm_cond.segmentationtool ) == 'kmeans': |
124 print('kmeans') | 144 print('kmeans') |
125 ##k-means | 145 ##k-means |
126 | 146 |
127 skm = spatialKMeans(msidata, r=c($segm_cond.kmeans_r), k=c($segm_cond.kmeans_k), method="$segm_cond.kmeans_method") | 147 skm = spatialKMeans(msidata, r=c($segm_cond.kmeans_r), k=c($segm_cond.kmeans_k), method="$segm_cond.kmeans_method") |
148 | |
149 ## remove msidata to clean up RAM space | |
150 rm(msidata) | |
151 gc() | |
152 | |
128 print(image(skm, key=TRUE, main="K-means clustering", lattice=lattice_input, strip=strip_input, col= colourvector, layout=c(1,1), ylim=c(maximumy+2, minimumy-2))) | 153 print(image(skm, key=TRUE, main="K-means clustering", lattice=lattice_input, strip=strip_input, col= colourvector, layout=c(1,1), ylim=c(maximumy+2, minimumy-2))) |
129 | 154 |
130 print(plot(skm, main="K-means plot", lattice=lattice_input, col= colourvector, strip=strip_input, layout=c(1,1))) | 155 print(plot(skm, main="K-means plot", lattice=lattice_input, col= colourvector, strip=strip_input, layout=c(1,1))) |
131 | 156 |
132 skm_clusters = data.frame(matrix(NA, nrow = pixelcount, ncol = 0)) | 157 skm_clusters = data.frame(matrix(NA, nrow = pixelcount, ncol = 0)) |
160 #elif str( $segm_cond.segmentationtool ) == 'centroids': | 185 #elif str( $segm_cond.segmentationtool ) == 'centroids': |
161 print('centroids') | 186 print('centroids') |
162 ##centroids | 187 ##centroids |
163 | 188 |
164 ssc = spatialShrunkenCentroids(msidata, r=c($segm_cond.centroids_r), k=c($segm_cond.centroids_k), s=c($segm_cond.centroids_s), method="$segm_cond.centroids_method") | 189 ssc = spatialShrunkenCentroids(msidata, r=c($segm_cond.centroids_r), k=c($segm_cond.centroids_k), s=c($segm_cond.centroids_s), method="$segm_cond.centroids_method") |
190 ## remove msidata to clean up RAM space | |
191 rm(msidata) | |
192 gc() | |
165 print(image(ssc, key=TRUE, main="Spatial shrunken centroids", lattice=lattice_input, strip = strip_input, col= colourvector,layout=c(1,1), ylim=c(maximumy+2, minimumy-2))) | 193 print(image(ssc, key=TRUE, main="Spatial shrunken centroids", lattice=lattice_input, strip = strip_input, col= colourvector,layout=c(1,1), ylim=c(maximumy+2, minimumy-2))) |
166 print(plot(ssc, main="Spatial shrunken centroids plot", lattice=lattice_input, col= colourvector, strip = strip_input,layout=c(1,1))) | 194 print(plot(ssc, main="Spatial shrunken centroids plot", lattice=lattice_input, col= colourvector, strip = strip_input,layout=c(1,1))) |
167 print(plot(ssc, mode = "tstatistics",key = TRUE, lattice=lattice_input, layout = c(1,1), main="t-statistics", col=colourvector)) | 195 print(plot(ssc, mode = "tstatistics",key = TRUE, lattice=lattice_input, layout = c(1,1), main="t-statistics", col=colourvector)) |
168 plot(summary(ssc), main = "Number of segments") | 196 plot(summary(ssc), main = "Number of segments") |
169 | 197 |
272 </param> | 300 </param> |
273 <when value="standard_image"/> | 301 <when value="standard_image"/> |
274 <when value="lattice_image"/> | 302 <when value="lattice_image"/> |
275 </conditional> | 303 </conditional> |
276 <repeat name="colours" title="Colours for the plots" min="1" max="50"> | 304 <repeat name="colours" title="Colours for the plots" min="1" max="50"> |
277 <param name="feature_color" type="color" label="Colours" value="#ff00ff" help="Numbers of columns should be the same as number of components"> | 305 <param name="feature_color" type="color" label="Colours" value="#ff00ff" help="Numbers of colours should be the same as number of components"> |
278 <sanitizer> | 306 <sanitizer> |
279 <valid initial="string.letters,string.digits"> | 307 <valid initial="string.letters,string.digits"> |
280 <add value="#" /> | 308 <add value="#" /> |
281 </valid> | 309 </valid> |
282 </sanitizer> | 310 </sanitizer> |
284 </repeat> | 312 </repeat> |
285 <param name="output_rdata" type="boolean" label="Results as .RData output"/> | 313 <param name="output_rdata" type="boolean" label="Results as .RData output"/> |
286 <param name="setseed" type="integer" value="1" label="set seed" help="Use same value to reproduce previous results"/> | 314 <param name="setseed" type="integer" value="1" label="set seed" help="Use same value to reproduce previous results"/> |
287 </inputs> | 315 </inputs> |
288 <outputs> | 316 <outputs> |
289 <data format="pdf" name="segmentationimages" from_work_dir="segmentationpdf.pdf" label = "${tool.name} on ${on_string}"/> | 317 <data format="pdf" name="segmentationimages" from_work_dir="segmentationpdf.pdf" label = "${tool.name} on ${on_string}: results"/> |
290 <data format="tabular" name="mzfeatures" label="${tool.name} on ${on_string}: features"/> | 318 <data format="tabular" name="mzfeatures" label="${tool.name} on ${on_string}: features"/> |
291 <data format="tabular" name="pixeloutput" label="${tool.name} on ${on_string}: pixels"/> | 319 <data format="tabular" name="pixeloutput" label="${tool.name} on ${on_string}: pixels"/> |
292 <data format="rdata" name="segmentation_rdata" label="${tool.name} on ${on_string}: results.RData"> | 320 <data format="rdata" name="segmentation_rdata" label="${tool.name} on ${on_string}: results.RData"> |
293 <filter>output_rdata</filter> | 321 <filter>output_rdata</filter> |
294 </data> | 322 </data> |
303 </repeat> | 331 </repeat> |
304 <repeat name="colours"> | 332 <repeat name="colours"> |
305 <param name="feature_color" value="#0000FF"/> | 333 <param name="feature_color" value="#0000FF"/> |
306 </repeat> | 334 </repeat> |
307 <output name="segmentationimages" file="pca_imzml.pdf" compare="sim_size"/> | 335 <output name="segmentationimages" file="pca_imzml.pdf" compare="sim_size"/> |
308 <output name="mzfeatures" file="loadings_pca.tabular"/> | 336 <output name="mzfeatures"> |
337 <assert_contents> | |
338 <has_text text="300.17" /> | |
339 <has_text text="-4.234458e-04" /> | |
340 <has_text text="3.878545e-10" /> | |
341 <has_n_columns n="3" /> | |
342 </assert_contents> | |
343 </output> | |
309 <output name="pixeloutput" file="scores_pca.tabular"/> | 344 <output name="pixeloutput" file="scores_pca.tabular"/> |
310 </test> | 345 </test> |
311 <test> | 346 <test> |
312 <expand macro="infile_analyze75"/> | 347 <expand macro="infile_analyze75"/> |
313 <param name="segmentationtool" value="kmeans"/> | 348 <param name="segmentationtool" value="kmeans"/> |