Mercurial > repos > galaxyp > cardinal_segmentations
comparison segmentation.xml @ 1:98d48f081ad9 draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/cardinal commit d2f311f7fff24e54c565127c40414de708e31b3c
author | galaxyp |
---|---|
date | Thu, 25 Oct 2018 07:25:52 -0400 |
parents | e56a955cd1c0 |
children | 034885df9b09 |
comparison
equal
deleted
inserted
replaced
0:e56a955cd1c0 | 1:98d48f081ad9 |
---|---|
1 <tool id="cardinal_segmentations" name="MSI segmentation" version="@VERSION@.0"> | 1 <tool id="cardinal_segmentations" name="MSI segmentation" version="@VERSION@.1"> |
2 <description>mass spectrometry imaging spatial clustering</description> | 2 <description>mass spectrometry imaging spatial clustering</description> |
3 <macros> | 3 <macros> |
4 <import>macros.xml</import> | 4 <import>macros.xml</import> |
5 </macros> | 5 </macros> |
6 <expand macro="requirements"> | 6 <expand macro="requirements"> |
7 <requirement type="package" version="2.2.1">r-gridextra</requirement> | 7 <requirement type="package" version="2.3">r-gridextra</requirement> |
8 <requirement type="package" version="0.20-35">r-lattice</requirement> | 8 <requirement type="package" version="0.20_35">r-lattice</requirement> |
9 </expand> | 9 </expand> |
10 <command detect_errors="exit_code"> | 10 <command detect_errors="exit_code"> |
11 <![CDATA[ | 11 <![CDATA[ |
12 | 12 |
13 @INPUT_LINKING@ | 13 @INPUT_LINKING@ |
76 set.seed($setseed) | 76 set.seed($setseed) |
77 | 77 |
78 #if str( $segm_cond.segmentationtool ) == 'pca': | 78 #if str( $segm_cond.segmentationtool ) == 'pca': |
79 print('pca') | 79 print('pca') |
80 ##pca | 80 ##pca |
81 | 81 |
82 component_vector = character() | 82 component_vector = character() |
83 for (numberofcomponents in 1:$segm_cond.pca_ncomp) | 83 for (numberofcomponents in 1:$segm_cond.pca_ncomp) |
84 {component_vector[numberofcomponents]= paste0("PC", numberofcomponents)} | 84 {component_vector[numberofcomponents]= paste0("PC", numberofcomponents)} |
85 pca_result = PCA(msidata, ncomp=$segm_cond.pca_ncomp, column = component_vector, superpose = FALSE, | 85 pca_result = PCA(msidata, ncomp=$segm_cond.pca_ncomp, column = component_vector, superpose = FALSE, |
86 method = "$segm_cond.pca_method", scale = $segm_cond.pca_scale, layout = c(ncomp, 1)) | 86 method = "$segm_cond.pca_method", scale = $segm_cond.pca_scale, layout = c(ncomp, 1)) |
99 pcaloadings2 = cbind(matrix(unlist(strsplit(rownames(pcaloadings), " = ")), ncol=2, byrow=TRUE)[,2], pcaloadings) | 99 pcaloadings2 = cbind(matrix(unlist(strsplit(rownames(pcaloadings), " = ")), ncol=2, byrow=TRUE)[,2], pcaloadings) |
100 colnames(pcaloadings2) = c("mz", colnames(pcaloadings)) | 100 colnames(pcaloadings2) = c("mz", colnames(pcaloadings)) |
101 pcascores = (pca_result@resultData\$ncomp\$scores) ### scores for each pixel | 101 pcascores = (pca_result@resultData\$ncomp\$scores) ### scores for each pixel |
102 | 102 |
103 ## pixel names and coordinates | 103 ## pixel names and coordinates |
104 pixel_names = gsub(", y = ", "_", rownames(pcascores)) | 104 ## to remove potential sample names and z dimension, split at comma and take only x and y |
105 pixel_names = gsub(" = ", "y_", pixel_names) | 105 x_coords = unlist(lapply(strsplit(rownames(pcascores), ","), `[[`, 1)) |
106 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 106 y_coords = unlist(lapply(strsplit(rownames(pcascores), ","), `[[`, 2)) |
107 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 107 x_coordinates = gsub("x = ","",x_coords) |
108 y_coordinates = gsub(" y = ","",y_coords) | |
109 | |
110 pixel_names = paste0("xy_", x_coordinates, "_", y_coordinates) | |
108 pcascores2 = data.frame(pixel_names, x_coordinates, y_coordinates, pcascores) | 111 pcascores2 = data.frame(pixel_names, x_coordinates, y_coordinates, pcascores) |
109 colnames(pcascores2) = c("pixel names", "x", "y", colnames(pcascores)) | 112 colnames(pcascores2) = c("pixel names", "x", "y", colnames(pcascores)) |
110 write.table(pcaloadings2, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 113 write.table(pcaloadings2, file="$mzfeatures", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
111 write.table(pcascores2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") | 114 write.table(pcascores2, file="$pixeloutput", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") |
112 | 115 |
130 for (iteration in 1:length(skm@resultData)){ | 133 for (iteration in 1:length(skm@resultData)){ |
131 skm_cluster = ((skm@resultData)[[iteration]]\$cluster) | 134 skm_cluster = ((skm@resultData)[[iteration]]\$cluster) |
132 skm_clusters = cbind(skm_clusters, skm_cluster) } | 135 skm_clusters = cbind(skm_clusters, skm_cluster) } |
133 | 136 |
134 ## pixel names and coordinates | 137 ## pixel names and coordinates |
135 pixel_names = gsub(", y = ", "_", rownames(skm_clusters)) | 138 ## to remove potential sample names and z dimension, split at comma and take only x and y |
136 pixel_names = gsub(" = ", "y_", pixel_names) | 139 x_coords = unlist(lapply(strsplit(rownames(skm_clusters), ","), `[[`, 1)) |
137 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 140 y_coords = unlist(lapply(strsplit(rownames(skm_clusters), ","), `[[`, 2)) |
138 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 141 x_coordinates = gsub("x = ","",x_coords) |
142 y_coordinates = gsub(" y = ","",y_coords) | |
143 pixel_names = paste0("xy_", x_coordinates, "_", y_coordinates) | |
139 skm_clusters2 = data.frame(pixel_names, x_coordinates, y_coordinates, skm_clusters) | 144 skm_clusters2 = data.frame(pixel_names, x_coordinates, y_coordinates, skm_clusters) |
140 colnames(skm_clusters2) = c("pixel names", "x", "y",names(skm@resultData)) | 145 colnames(skm_clusters2) = c("pixel names", "x", "y",names(skm@resultData)) |
141 | 146 |
142 skm_toplabels = topLabels(skm, n=$segm_cond.kmeans_toplabels) | 147 skm_toplabels = topLabels(skm, n=$segm_cond.kmeans_toplabels) |
143 | 148 |
166 for (iteration in 1:length(ssc@resultData)){ | 171 for (iteration in 1:length(ssc@resultData)){ |
167 ssc_class = ((ssc@resultData)[[iteration]]\$classes) | 172 ssc_class = ((ssc@resultData)[[iteration]]\$classes) |
168 ssc_classes = cbind(ssc_classes, ssc_class) } | 173 ssc_classes = cbind(ssc_classes, ssc_class) } |
169 | 174 |
170 ## pixel names and coordinates | 175 ## pixel names and coordinates |
171 pixel_names = gsub(", y = ", "_", rownames(ssc_classes)) | 176 ## to remove potential sample names and z dimension, split at comma and take only x and y |
172 pixel_names = gsub(" = ", "y_", pixel_names) | 177 x_coords = unlist(lapply(strsplit(rownames(ssc_classes), ","), `[[`, 1)) |
173 x_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,2] | 178 y_coords = unlist(lapply(strsplit(rownames(ssc_classes), ","), `[[`, 2)) |
174 y_coordinates = matrix(unlist(strsplit(pixel_names, "_")), ncol=3, byrow=TRUE)[,3] | 179 x_coordinates = gsub("x = ","",x_coords) |
180 y_coordinates = gsub(" y = ","",y_coords) | |
181 pixel_names = paste0("xy_", x_coordinates, "_", y_coordinates) | |
175 ssc_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, ssc_classes) | 182 ssc_classes2 = data.frame(pixel_names, x_coordinates, y_coordinates, ssc_classes) |
176 colnames(ssc_classes2) = c("pixel names", "x", "y", names(ssc@resultData)) | 183 colnames(ssc_classes2) = c("pixel names", "x", "y", names(ssc@resultData)) |
177 | 184 |
178 ssc_toplabels = topLabels(ssc, n=$segm_cond.centroids_toplabels) | 185 ssc_toplabels = topLabels(ssc, n=$segm_cond.centroids_toplabels) |
179 | 186 |