Mercurial > repos > galaxyp > mass_spectrometry_imaging_segmentations
diff segmentation_tool.xml @ 2:f66c5789deac draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/msi_segmentation commit ed7d3e6f1a09c78c8f71cc1bdc1a20249767f646
author | galaxyp |
---|---|
date | Sun, 11 Mar 2018 10:39:01 -0400 |
parents | d4158c9955ea |
children | 830c6df59603 |
line wrap: on
line diff
--- a/segmentation_tool.xml Thu Mar 01 08:26:19 2018 -0500 +++ b/segmentation_tool.xml Sun Mar 11 10:39:01 2018 -0400 @@ -1,4 +1,4 @@ -<tool id="mass_spectrometry_imaging_segmentations" name="MSI segmentation" version="1.7.0.1"> +<tool id="mass_spectrometry_imaging_segmentations" name="MSI segmentation" version="1.7.0.2"> <description>tool for spatial clustering</description> <requirements> <requirement type="package" version="1.7.0">bioconductor-cardinal</requirement> @@ -180,7 +180,7 @@ pca = PCA(msidata, ncomp=$segm_cond.pca_ncomp, column = component_vector, superpose = FALSE, method = "$segm_cond.pca_method", scale = $segm_cond.pca_scale, layout = c(ncomp, 1)) - print(image(pca, main="PCA image", lattice=TRUE, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)), contrast.enhance = "$segm_cond.pca_imagecontrast", smooth.image = "$segm_cond.pca_imagesmoothing", col=colourvector, ylim=c(maximumy+2, 0))) + print(image(pca, main="PCA image", lattice=TRUE, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)), col=colourvector, ylim=c(maximumy+2, 0))) print(plot(pca, main="PCA plot", lattice=TRUE, col= colourvector, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)))) @@ -194,13 +194,19 @@ print('kmeans') ##k-means - skm = spatialKMeans(msidata, r=$segm_cond.kmeans_r, k=$segm_cond.kmeans_k, method="$segm_cond.kmeans_method") - print(image(skm, key=TRUE, main="K-means clustering", lattice=TRUE, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)), contrast.enhance = "$segm_cond.kmeans_imagecontrast", col= colourvector, smooth.image = "$segm_cond.kmeans_imagesmoothing", ylim=c(maximumy+2, 0))) - print(plot(skm, main="K-means plot", lattice=TRUE, col= colourvector, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)))) + skm = spatialKMeans(msidata, r=c($segm_cond.kmeans_r), k=c($segm_cond.kmeans_k), method="$segm_cond.kmeans_method") + print(image(skm, key=TRUE, main="K-means clustering", lattice=TRUE, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)), col= colourvector, ylim=c(maximumy+2, 0), layout=c(1,1))) + + print(plot(skm, main="K-means plot", lattice=TRUE, col= colourvector, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)), layout=c($segm_cond.kmeans_layout))) - skm_clusters = (skm@resultData\$r\$cluster) - skm_toplabels = topLabels(skm, n=500) + skm_clusters = data.frame(matrix(NA, nrow = pixelcount, ncol = 0)) + for (iteration in 1:length(skm@resultData)){ + skm_cluster = ((skm@resultData)[[iteration]]\$cluster) + skm_clusters = cbind(skm_clusters, skm_cluster) } + colnames(skm_clusters) = names((skm@resultData)) + + skm_toplabels = topLabels(skm, n=$segm_cond.kmeans_toplabels) write.table(skm_toplabels, file="$mzfeatures", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") write.table(skm_clusters, file="$pixeloutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") @@ -210,12 +216,17 @@ print('centroids') ##centroids - ssc = spatialShrunkenCentroids(msidata, r=$segm_cond.centroids_r, k=$segm_cond.centroids_k, s=$segm_cond.centroids_s, method="$segm_cond.centroids_method") - print(image(ssc, key=TRUE, main="Spatial shrunken centroids", lattice=TRUE, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)), contrast.enhance = "$segm_cond.centroids_imagecontrast", col= colourvector, smooth.image = "$segm_cond.centroids_imagesmoothing", ylim=c(maximumy+2, 0))) - print(plot(ssc, main="Spatial shrunken centroids plot", lattice=TRUE, col= colourvector, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)))) + ssc = spatialShrunkenCentroids(msidata, r=c($segm_cond.centroids_r), k=c($segm_cond.centroids_k), s=c($segm_cond.centroids_s), method="$segm_cond.centroids_method") + print(image(ssc, key=TRUE, main="Spatial shrunken centroids", lattice=TRUE, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)), col= colourvector, ylim=c(maximumy+2, 0),layout=c(1,1))) + print(plot(ssc, main="Spatial shrunken centroids plot", lattice=TRUE, col= colourvector, strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)),layout=c($segm_cond.centroids_layout))) - ssc_classes = (ssc@resultData\$r\$classes) - ssc_toplabels = topLabels(ssc, n=500) + ssc_classes = data.frame(matrix(NA, nrow = pixelcount, ncol = 0)) + for (iteration in 1:length(ssc@resultData)){ + ssc_class = ((ssc@resultData)[[iteration]]\$classes) + ssc_classes = cbind(ssc_classes, ssc_class) } + colnames(ssc_classes) = names((ssc@resultData)) + + ssc_toplabels = topLabels(ssc, n=$segm_cond.centroids_toplabels) write.table(ssc_toplabels, file="$mzfeatures", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") write.table(ssc_classes, file="$pixeloutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") @@ -255,62 +266,40 @@ <option value="TRUE">yes</option> <option value="FALSE" selected="True">no</option> </param> - <param name="pca_imagecontrast" type="select" label="Select a contrast enhancement function." help="The 'histogram' equalization method flatterns the distribution of intensities. The hotspot 'suppression' method uses thresholding to reduce the intensities of hotspots"> - <option value="none" selected="True">none</option> - <option value="suppression">suppression</option> - <option value="histogram">histogram</option> - </param> - <param name="pca_imagesmoothing" type="select" label="Select an image smoothing function." help="The 'gaussian' smoothing method smooths images with a simple gaussian kernel. The 'adaptive' method uses bilateral filtering to preserve edges."> - <option value="none" selected="True">none</option> - <option value="gaussian">gaussian</option> - <option value="adaptive">adaptive</option> - </param> </when> <when value="kmeans"> <param name="kmeans_r" type="text" value="2" - label="The spatial neighborhood radius of nearby pixels to consider (r)."/> + label="The spatial neighborhood radius of nearby pixels to consider (r)." help="Multiple values are allowed (e.g. 1,2,3 or 2:5)"/> <param name="kmeans_k" type="text" value="3" - label="The number of clusters (k)."/> + label="The number of clusters (k)." help="Multiple values are allowed (e.g. 1,2,3 or 2:5)"/> <param name="kmeans_method" type="select" display="radio" label="The method to use to calculate the spatial smoothing kernels for the embedding. The 'gaussian' method refers to spatially-aware (SA) clustering, and 'adaptive' refers to spatially-aware structurally-adaptive (SASA) clustering."> <option value="gaussian">gaussian</option> <option value="adaptive" selected="True">adaptive</option> </param> - <param name="kmeans_imagecontrast" type="select" label="Select a contrast enhancement function." help="The 'histogram' equalization method flatterns the distribution of intensities. The hotspot 'suppression' method uses thresholding to reduce the intensities of hotspots"> - <option value="none" selected="True">none</option> - <option value="suppression">suppression</option> - <option value="histogram">histogram</option> - </param> - <param name="kmeans_imagesmoothing" type="select" label="Select an image smoothing function." help="The 'gaussian' smoothing method smooths images with a simple gaussian kernel. The 'adaptive' method uses bilateral filtering to preserve edges."> - <option value="none" selected="True">none</option> - <option value="gaussian">gaussian</option> - <option value="adaptive">adaptive</option> - </param> - </when> + <param name="kmeans_toplabels" type="integer" value="500" + label="Number of toplabels (masses) which should be written in tabular output"/> + <param name="kmeans_layout" type="text" value="1,1" + label="Number of rows and columns to plot pictures in pdf output" help="e.g. 1,1 means 1 plot per page; 2,3 means 2 rows with 3 plots each = 6 plots per page"/> + </when> <when value="centroids"> <param name="centroids_r" type="text" value="2" - label="The spatial neighborhood radius of nearby pixels to consider (r)."/> + label="The spatial neighborhood radius of nearby pixels to consider (r)." help="Multiple values are allowed (e.g. 1,2,3 or 2:5)"/> <param name="centroids_k" type="text" value="5" - label="The initial number of clusters (k)."/> - <param name="centroids_s" type="integer" value="2" + label="The initial number of clusters (k)." help="Multiple values are allowed (e.g. 1,2,3 or 2:5)"/> + <param name="centroids_s" type="text" value="2" label="The sparsity thresholding parameter by which to shrink the t-statistics (s)." - help="As s increases, fewer mass features (m/z values) will be used in the spatial segmentation, and only the informative mass features will be retained."/> + help="As s increases, fewer mass features (m/z values) will be used in the spatial segmentation, and only the informative mass features will be retained. Multiple values are allowed (e.g. 1,2,3 or 2:5)."/> <param name="centroids_method" type="select" display="radio" label = "The method to use to calculate the spatial smoothing kernels for the embedding. The 'gaussian' method refers to spatially-aware (SA) weights, and 'adaptive' refers to spatially-aware structurally-adaptive (SASA) weights."> <option value="gaussian" selected="True">gaussian</option> <option value="adaptive">adaptive</option> </param> - <param name="centroids_imagecontrast" type="select" label="Select a contrast enhancement function." help="The 'histogram' equalization method flatterns the distribution of intensities. The hotspot 'suppression' method uses thresholding to reduce the intensities of hotspots"> - <option value="none" selected="True">none</option> - <option value="suppression">suppression</option> - <option value="histogram">histogram</option> - </param> - <param name="centroids_imagesmoothing" type="select" label="Select an image smoothing function." help="The 'gaussian' smoothing method smooths images with a simple gaussian kernel. The 'adaptive' method uses bilateral filtering to preserve edges."> - <option value="none" selected="True">none</option> - <option value="gaussian">gaussian</option> - <option value="adaptive">adaptive</option> - </param> + <param name="centroids_toplabels" type="integer" value="500" + label="Number of toplabels (masses) which should be written in tabular output"/> + <param name="centroids_layout" type="text" value="1,1" + label="Number of rows and columns to plot pictures in pdf output" help="e.g. 1,1 means 1 plot per page; 2,3 means 2 rows with 3 plots each = 6 plots per page"/> </when> </conditional> <repeat name="colours" title="Colours for the plots" min="1" max="50"> @@ -352,6 +341,8 @@ <composite_data value="Analyze75.t2m" /> </param> <param name="segmentationtool" value="kmeans"/> + <param name="kmeans_r" value="1:3"/> + <param name="kmeans_k" value="2,3"/> <repeat name="colours"> <param name="feature_color" value="#ff00ff"/> </repeat> @@ -368,6 +359,9 @@ <test> <param name="infile" value="preprocessing_results1.RData" ftype="rdata"/> <param name="segmentationtool" value="centroids"/> + <param name="centroids_r" ftype="text" value="1,2"/> + <param name="centroids_k" ftype="text" value="5"/> + <param name="centroids_toplabels" ftype="integer" value="100"/> <repeat name="colours"> <param name="feature_color" value="#0000FF"/> </repeat>