Mercurial > repos > galaxyp > msi_filtering
view msi_filtering.xml @ 2:22db5eb94e50 draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/msi_filtering commit 1c808d60243bb1eeda0cd26cb4b0a17ab05de2c0
author | galaxyp |
---|---|
date | Mon, 28 May 2018 12:36:24 -0400 |
parents | 98c101b19f3c |
children | d51c3c814d57 |
line wrap: on
line source
<tool id="mass_spectrometry_imaging_filtering" name="MSI filtering" version="1.10.0.0"> <description>tool for filtering mass spectrometry imaging data</description> <requirements> <requirement type="package" version="1.10.0">bioconductor-cardinal</requirement> <requirement type="package" version="2.2.1">r-gridextra</requirement> </requirements> <command detect_errors="exit_code"> <![CDATA[ #if $infile.ext == 'imzml' ln -s '${infile.extra_files_path}/imzml' infile.imzML && ln -s '${infile.extra_files_path}/ibd' infile.ibd && #elif $infile.ext == 'analyze75' ln -s '${infile.extra_files_path}/hdr' infile.hdr && ln -s '${infile.extra_files_path}/img' infile.img && ln -s '${infile.extra_files_path}/t2m' infile.t2m && #else ln -s $infile infile.RData && #end if cat '${MSI_subsetting}' && echo ${MSI_subsetting} && Rscript '${MSI_subsetting}' ]]> </command> <configfiles> <configfile name="MSI_subsetting"><![CDATA[ ################################# load libraries and read file ################# library(Cardinal) library(gridExtra) #if $infile.ext == 'imzml' msidata = readImzML('infile') #elif $infile.ext == 'analyze75' msidata = readAnalyze('infile') #else load('infile.RData') #end if ##################################### QC: inputfile properties in numbers ###### #if $outputs.outputs_select == "quality_control": ## Number of features (mz) maxfeatures = length(features(msidata)) ## Range mz minmz = round(min(mz(msidata)), digits=2) maxmz = round(max(mz(msidata)), digits=2) ## Number of spectra (pixels) pixelcount = length(pixels(msidata)) ## Range x coordinates minimumx = min(coord(msidata)[,1]) maximumx = max(coord(msidata)[,1]) ## Range y coordinates minimumy = min(coord(msidata)[,2]) maximumy = max(coord(msidata)[,2]) ## Number of intensities > 0 npeaks= sum(spectra(msidata)[]>0) ## Spectra multiplied with mz (potential number of peaks) numpeaks = ncol(spectra(msidata)[])*nrow(spectra(msidata)[]) ## Percentage of intensities > 0 percpeaks = round(npeaks/numpeaks*100, digits=2) ## Number of empty TICs TICs = colSums(spectra(msidata)[]) NumemptyTIC = sum(TICs == 0) ## median TIC medint = round(median(TICs), digits=2) ## Store features for QC plot featuresinfile = mz(msidata) #end if ###################################### Filtering of pixels ##################### ### Pixels in the one column format "x=,y=" #if str($pixels_cond.pixel_filtering) == "single_column": print("single column") input_list = read.delim("$pixels_cond.single_pixels", header = FALSE, stringsAsFactors = FALSE) numberpixels = length(input_list[,$pixels_cond.pixel_column]) valid_entries = input_list[,$pixels_cond.pixel_column] %in% names(pixels(msidata)) validpixels = sum(valid_entries) if (validpixels != 0) { pixelsofinterest = pixels(msidata)[names(pixels(msidata)) %in% input_list[valid_entries,$pixels_cond.pixel_column]] msidata = msidata[,pixelsofinterest] }else{ msidata = msidata[,0] validpixels=0 } ### Pixels in two columns format: x and y in different columns #elif str($pixels_cond.pixel_filtering) == "two_columns": print("two columns") input_list = read.delim("$pixels_cond.two_columns_pixel", header = FALSE, stringsAsFactors = FALSE) numberpixels = length(input_list[,$pixels_cond.pixel_column_x]) inputpixel_x = input_list[,$pixels_cond.pixel_column_x] inputpixel_y = input_list[,$pixels_cond.pixel_column_y] inputpixels = cbind(inputpixel_x, inputpixel_y) colnames(inputpixels) = c("x", "y") valid_rows = merge(inputpixels, coord(msidata)[,1:2]) validpixels = nrow(valid_rows) if (validpixels != 0) { pixelvector = character() for (pixel in 1:nrow(valid_rows)) { pixelvector[pixel] = paste0("x = ", valid_rows[pixel,1],", ", "y = ", valid_rows[pixel,2]) } pixelsofinterest= pixels(msidata)[names(pixels(msidata)) %in% pixelvector] msidata = msidata[,pixelsofinterest] }else{ validpixels=0 } ### Pixels wihin x and y minima and maxima are kept: #elif str($pixels_cond.pixel_filtering) == "pixel_range": print("pixel range") numberpixels = "range" validpixels = "range" ## only filter pixels if at least one pixel will be left if (sum(coord(msidata)\$x <= $pixels_cond.max_x_range & coord(msidata)\$x >= $pixels_cond.min_x_range) > 0 & sum(coord(msidata)\$y <= $pixels_cond.max_y_range & coord(msidata)\$y >= $pixels_cond.min_y_range) > 0) { msidata = msidata[, coord(msidata)\$x <= $pixels_cond.max_x_range & coord(msidata)\$x >= $pixels_cond.min_x_range] msidata = msidata[, coord(msidata)\$y <= $pixels_cond.max_y_range & coord(msidata)\$y >= $pixels_cond.min_y_range] }else{ msidata = msidata[,0] print("no valid pixel found") } #elif str($pixels_cond.pixel_filtering) == "none": print("no pixel filtering") numberpixels = 0 validpixels = 0 #end if ###################################### filtering of features ###################### ### Tabular file contains mz either as numbers or in the format mz=800.01 #if str($features_cond.features_filtering) == "features_list": print("feature list") input_features = read.delim("$inputfeatures", header = FALSE, stringsAsFactors = FALSE) startingrow = $features_cond.feature_header+1 extracted_features = input_features[startingrow:nrow(input_features),$features_cond.feature_column] numberfeatures = length(extracted_features) if (grepl("m/z = ", input_features[startingrow,$features_cond.feature_column])==FALSE) ### if input is in numeric format { if (class(extracted_features) == "numeric") { charactervector = rep("m/z = ", numberfeatures) mz_added = paste0(charactervector, round(extracted_features,digits=2)) validfeatures = mz_added %in% names(features(msidata)) featuresofinterest = features(msidata)[names(features(msidata)) %in% mz_added[validfeatures]] validmz = sum(validfeatures) }else{ validmz = 0 featuresofinterest = 0 } ### if input is already in character format (m/z = 800.01) }else{ validfeatures = extracted_features %in% names(features(msidata)) featuresofinterest = features(msidata)[names(features(msidata)) %in% extracted_features[validfeatures]] validmz = sum(validfeatures) } ### filter msidata for valid features msidata = msidata[featuresofinterest,] ### Only features within a given minimum and maximum value are kept: #elif str($features_cond.features_filtering) == "features_range": print("feature range") numberfeatures = "range" validmz = "range" if (sum(mz(msidata) >= $features_cond.min_mz & mz(msidata) <= $features_cond.max_mz)> 0) { msidata = msidata[mz(msidata) >= $features_cond.min_mz & mz(msidata) <= $features_cond.max_mz,] }else{ msidata = msidata[0,] print("no valid mz range") } #elif str($features_cond.features_filtering) == "none": print("no feature filtering") validmz = 0 numberfeatures = 0 #end if # save msidata as Rfile save(msidata, file="$msidata_filtered") ###################################### outputfile properties in numbers ######## #if $outputs.outputs_select == "quality_control": ## Number of features (mz) maxfeatures2 = length(features(msidata)) ## Range mz minmz2 = round(min(mz(msidata)), digits=2) maxmz2 = round(max(mz(msidata)), digits=2) ## Number of spectra (pixels) pixelcount2 = length(pixels(msidata)) ## Range x coordinates minimumx2 = min(coord(msidata)[,1]) maximumx2 = max(coord(msidata)[,1]) ## Range y coordinates minimumy2 = min(coord(msidata)[,2]) maximumy2 = max(coord(msidata)[,2]) ## Number of intensities > 0 npeaks2= sum(spectra(msidata)[]>0) ## Spectra multiplied with mz (potential number of peaks) numpeaks2 = ncol(spectra(msidata)[])*nrow(spectra(msidata)[]) ## Percentage of intensities > 0 percpeaks2 = round(npeaks2/numpeaks2*100, digits=2) ## Number of empty TICs TICs2 = colSums(spectra(msidata)[]) NumemptyTIC2 = sum(TICs2 == 0) ## median TIC medint2 = round(median(TICs2), digits=2) properties = c("Number of mz features", "Range of mz values [Da]", "Number of pixels", "Range of x coordinates", "Range of y coordinates", "Intensities > 0", "Median TIC per pixel", "Number of zero TICs", "pixel overview", "feature overview") before = c(paste0(maxfeatures), paste0(minmz, " - ", maxmz), paste0(pixelcount), paste0(minimumx, " - ", maximumx), paste0(minimumy, " - ", maximumy), paste0(percpeaks, " %"), paste0(medint), paste0(NumemptyTIC), paste0("input pixels: ", numberpixels), paste0("input mz: ", numberfeatures)) filtered = c(paste0(maxfeatures2), paste0(minmz2, " - ", maxmz2), paste0(pixelcount2), paste0(minimumx2, " - ", maximumx2), paste0(minimumy2, " - ", maximumy2), paste0(percpeaks2, " %"), paste0(medint2), paste0(NumemptyTIC2), paste0("valid pixels: ", validpixels), paste0("valid mz: ", validmz)) property_df = data.frame(properties, before, filtered) ######################################## PDF QC ################################ pdf("filtertool_QC.pdf", fonts = "Times", pointsize = 12) plot(0,type='n',axes=FALSE,ann=FALSE) title(main=paste0("Qualitycontrol of filtering tool for file: \n\n", "$infile.display_name")) grid.table(property_df, rows= NULL) ### heatmap image as visual pixel control if (length(features(msidata))> 0 & length(pixels(msidata)) > 0) { image(msidata, mz=$outputs.inputmz, plusminus = $outputs.plusminus_dalton, contrast.enhance = "none", main= paste0($outputs.inputmz," ± ", $outputs.plusminus_dalton, " Da"), ylim = c(maximumy2+0.2*maximumy2,minimumy2-0.2*minimumy2)) ### control features which are left plot(featuresinfile, rep(1,length(featuresinfile)), yaxt="n", ylab=NA, xlab="m/z values", col="red", ylim=c(0.8, 1.1), main="Distribution of m/z values") lines(mz(msidata),rep(0.9, length(mz(msidata))), col="green", type="p") legend("top", horiz=TRUE, legend = c("before", "filtered"), fill = c("red", "green")) }else{ print("file has no features or pixels left") } dev.off() #end if ######################################## intensity matrix ###################### #if $output_matrix: if (length(features(msidata))> 0 & length(pixels(msidata)) > 0) { spectramatrix = spectra(msidata) rownames(spectramatrix) = mz(msidata) newmatrix = rbind(pixels(msidata), spectramatrix) write.table(newmatrix[2:nrow(newmatrix),], file="$matrixasoutput", quote = FALSE, row.names = TRUE, col.names=NA, sep = "\t") }else{ print("file has no features or pixels left") } #end if ]]></configfile> </configfiles> <inputs> <param name="infile" type="data" format="imzml, rdata, analyze75" label="Inputfile as imzML, Analyze7.5 or Cardinal MSImageSet saved as RData" help="Upload composite datatype imzML (ibd+imzML) or analyze75 (hdr+img+t2m) or regular upload .RData (Cardinal MSImageSet)"/> <conditional name="pixels_cond"> <param name="pixel_filtering" type="select" label="Select pixel filtering option"> <option value="none" selected="True">none</option> <option value="single_column">tabular file with single column (x = 1, y = 1)</option> <option value="two_columns">tabular file with separate columns for x and y values</option> <option value="pixel_range">ranges for x and y</option> </param> <when value="none"/> <when value="single_column"> <param name="single_pixels" type="data" format="tabular" label="Pixels in single column for filtering of MSI data" help="tabular file with pixels of interest in the form x = 1, y = 1"/> <param name="pixel_column" data_ref="single_pixels" label="Column with pixels" type="data_column"/> </when> <when value="two_columns"> <param name="two_columns_pixel" type="data" format="tabular" label="Pixels in two columns for filtering of MSI data" help="tabular file with pixels of interest in two separate columns"/> <param name="pixel_column_x" data_ref="two_columns_pixel" label="Column with x values" type="data_column"/> <param name="pixel_column_y" data_ref="two_columns_pixel" label="Column with y values" type="data_column"/> </when> <when value="pixel_range"> <param name="min_x_range" type="integer" value="0" label="Minimum value for x"/> <param name="max_x_range" type="integer" value="100" label="Maximum value for x"/> <param name="min_y_range" type="integer" value="0" label="Minimum value for y"/> <param name="max_y_range" type="integer" value="100" label="Maximum value for y"/> </when> </conditional> <conditional name="features_cond"> <param name="features_filtering" type="select" label="Select feature filtering option"> <option value="none" selected="True">none</option> <option value="features_list">tabular file with features (data type: 800.12 or m/z = 800.12)</option> <option value="features_range">range of features</option> </param> <when value="none"/> <when value="features_list"> <param name="inputfeatures" type="data" format="tabular" label="Features for filtering of MSI data" help="tabular file with masses of interest either as numbers (800.05) or in the form m/z = 800.05"/> <param name="feature_column" data_ref="inputfeatures" label="Column with features" type="data_column"/> <param name="feature_header" label="Number of header lines to skip" value="0" type="integer"/> </when> <when value="features_range"> <param name="min_mz" type="float" value="1" label="Minimum value for mz (in Dalton)"/> <param name="max_mz" type="float" value="100" label="Maximum value for mz (in Dalton)"/> </when> </conditional> <conditional name="outputs"> <param name="outputs_select" type="select" label="Quality control output"> <option value="quality_control" selected="True">yes</option> <option value="no_quality_control">no</option> </param> <when value="quality_control"> <param name="inputmz" type="float" value="1296.7" label="Mass for which a heatmap image will be drawn" help="Use a mass which is still present in all pixels to control if the pixel filtering went well"/> <param name="plusminus_dalton" value="0.25" type="float" label="mass range for mz value" help="plusminus mass window in Dalton"/> </when> <when value="no_quality_control"/> </conditional> <param name="output_matrix" type="boolean" display="radio" label="Intensity matrix output"/> </inputs> <outputs> <data format="rdata" name="msidata_filtered" label="${tool.name} ${on_string}"/> <data format="pdf" name="filtering_qc" from_work_dir="filtertool_QC.pdf" label = "QC ${tool.name} ${on_string}"> <filter>outputs["outputs_select"] == "quality_control"</filter> </data> <data format="tabular" name="matrixasoutput" label="Matrix ${tool.name} ${on_string}"> <filter>output_matrix</filter> </data> </outputs> <tests> <test expect_num_outputs="2"> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML"/> <composite_data value="Example_Continuous.ibd"/> </param> <param name="pixel_filtering" value="single_column"/> <param name="single_pixels" ftype="tabular" value = "inputpixels.tabular"/> <param name="pixel_column" value="1"/> <param name="features_filtering" value="features_list"/> <param name="inputfeatures" ftype="tabular" value = "inputfeatures.tabular"/> <param name="feature_column" value="2"/> <param name="feature_header" value="1"/> <param name="outputs_select" value="quality_control"/> <param name="inputmz" value="328.9"/> <param name="plusminus_dalton" value="0.25"/> <output name="filtering_qc" file="imzml_filtered.pdf" compare="sim_size" delta="20000"/> <output name="msidata_filtered" file="imzml_filtered.RData" compare="sim_size" /> </test> <test expect_num_outputs="2"> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML"/> <composite_data value="Example_Continuous.ibd"/> </param> <param name="pixel_filtering" value="pixel_range"/> <param name="min_x_range" value="10"/> <param name="max_x_range" value="20"/> <param name="min_y_range" value="2"/> <param name="max_y_range" value="2"/> <param name="outputs_select" value="quality_control"/> <param name="inputmz" value="328.9"/> <param name="plusminus_dalton" value="0.25"/> <output name="filtering_qc" file="imzml_filtered2.pdf" compare="sim_size" delta="20000"/> <output name="msidata_filtered" file="imzml_filtered2.RData" compare="sim_size" /> </test> <test expect_num_outputs="3"> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML"/> <composite_data value="Example_Continuous.ibd"/> </param> <param name="pixel_filtering" value="pixel_range"/> <param name="min_x_range" value="1"/> <param name="max_x_range" value="20"/> <param name="min_y_range" value="2"/> <param name="max_y_range" value="2"/> <param name="features_filtering" value="features_range"/> <param name="min_mz" value="0" /> <param name="max_mz" value="500"/> <param name="outputs_select" value="quality_control"/> <param name="inputmz" value="328.9"/> <param name="plusminus_dalton" value="0.25"/> <param name="output_matrix" value="True"/> <output name="filtering_qc" file="imzml_filtered3.pdf" compare="sim_size" delta="20000"/> <output name="msidata_filtered" file="imzml_filtered3.RData" compare="sim_size" /> <output name="matrixasoutput" file="imzml_matrix3.tabular"/> </test> <test expect_num_outputs="2"> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML"/> <composite_data value="Example_Continuous.ibd"/> </param> <param name="pixel_filtering" value="two_columns"/> <param name="two_columns_pixel" ftype="tabular" value = "inputpixels_2column.tabular"/> <param name="pixel_column_x" value="1"/> <param name="pixel_column_y" value="3"/> <param name="features_filtering" value="features_list"/> <param name="inputfeatures" ftype="tabular" value = "inputcalibrantfile2.txt"/> <param name="feature_column" value="1"/> <param name="feature_header" value="0"/> <param name="outputs_select" value="quality_control"/> <param name="inputmz" value="328.9"/> <param name="plusminus_dalton" value="0.25"/> <output name="filtering_qc" file="imzml_filtered4.pdf" compare="sim_size" delta="20000"/> <output name="msidata_filtered" file="imzml_filtered4.RData" compare="sim_size" /> </test> <test expect_num_outputs="2"> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML"/> <composite_data value="Example_Continuous.ibd"/> </param> <param name="pixel_filtering" value="pixel_range"/> <param name="min_x_range" value="0"/> <param name="max_x_range" value="10"/> <param name="min_y_range" value="2"/> <param name="max_y_range" value="20"/> <param name="features_filtering" value="features_range"/> <param name="min_mz" value="500" /> <param name="max_mz" value="700"/> <param name="outputs_select" value="quality_control"/> <param name="inputmz" value="328.9"/> <param name="plusminus_dalton" value="0.25"/> <output name="filtering_qc" file="imzml_filtered5.pdf" compare="sim_size" delta="20000"/> <output name="msidata_filtered" file="imzml_filtered5.RData" compare="sim_size" /> </test> <test expect_num_outputs="3"> <param name="infile" value="" ftype="analyze75"> <composite_data value="Analyze75.hdr"/> <composite_data value="Analyze75.img"/> <composite_data value="Analyze75.t2m"/> </param> <param name="pixel_filtering" value="single_column"/> <param name="single_pixels" ftype="tabular" value = "inputpixels2.tabular"/> <param name="pixel_column" value="1"/> <param name="features_filtering" value="features_list"/> <param name="inputfeatures" ftype="tabular" value = "featuresofinterest2.tabular"/> <param name="feature_column" value="1"/> <conditional name="outputs"> <param name="outputs_select" value="quality_control"/> <param name="inputmz" value="1200"/> <param name="plusminus_dalton" value="0.25"/> </conditional> <param name="output_matrix" value="True"/> <output name="filtering_qc" file="analyze_filtered.pdf" compare="sim_size" delta="20000"/> <output name="msidata_filtered" file="analyze_filtered.RData" compare="sim_size" /> <output name="matrixasoutput" file="analyze_matrix.tabular"/> </test> <test expect_num_outputs="2"> <param name="infile" value="" ftype="analyze75"> <composite_data value="Analyze75.hdr"/> <composite_data value="Analyze75.img"/> <composite_data value="Analyze75.t2m"/> </param> <conditional name="outputs"> <param name="outputs_select" value="quality_control"/> <param name="inputmz" value="1200"/> <param name="plusminus_dalton" value="0.25"/> </conditional> <output name="filtering_qc" file="analyze75_filtered2.pdf" compare="sim_size" delta="20000"/> <output name="msidata_filtered" file="analyze_filteredoutside.RData" compare="sim_size" /> </test> <test expect_num_outputs="2"> <param name="infile" value="preprocessed.RData" ftype="rdata"/> <conditional name="outputs"> <param name="outputs_select" value="no_quality_control"/> </conditional> <param name="output_matrix" value="True"/> <output name="matrixasoutput" file="rdata_matrix.tabular"/> <output name="msidata_filtered" file="rdata_notfiltered.RData" compare="sim_size" /> </test> </tests> <help> <![CDATA[ Cardinal is an R package that implements statistical & computational tools for analyzing mass spectrometry imaging datasets. `More information on Cardinal <http://cardinalmsi.org//>`_ This tool provides provides options to filter (subset) pixels and masses of mass-spectrometry imaging data. Input data: 3 types of input data can be used: - imzml file (upload imzml and ibd file via the "composite" function) `Introduction to the imzml format <https://ms-imaging.org/wp/imzml/>`_ - Analyze7.5 (upload hdr, img and t2m file via the "composite" function) - Cardinal "MSImageSet" data (with variable name "msidata", saved as .RData) Options: - pixel filtering: can use a tabular file containing x and y coordinates or by defining a range for x and y by hand - mass filtering: can use a tabular file containing masses of interest or by defining a range for the mass values Output: - imzML file filtered for pixels and/or masses - optional: pdf with heatmap showing the pixels that are left after filtering and plot of masses before and after filtering - optional: intensity matrix as tabular file (intensities for masses in rows and pixel in columns) Tip: - It is recommended to use the filtering tool only for masses which have been extracted from the same dataset. If you have masses from dataset A and you want to use them to filter dataset B, first find the corresponding (closest) features in dataset B by using the tool "Join two files on column allowing a small difference". Afterwards use the corresponding feature masses from dataset A to filter dataset B. ]]> </help> <citations> <citation type="doi">10.1093/bioinformatics/btv146</citation> </citations> </tool>