Mercurial > repos > galaxyp > msi_ion_images
view msi_ion_images.xml @ 4:9746576123c9 draft
planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/msi_ion_images commit 1c808d60243bb1eeda0cd26cb4b0a17ab05de2c0
author | galaxyp |
---|---|
date | Mon, 28 May 2018 12:37:17 -0400 |
parents | 616b98c235fb |
children | 2b9fa240e261 |
line wrap: on
line source
<tool id="mass_spectrometry_imaging_ion_images" name="MSI ion images" version="1.10.0.0"> <description> mass spectrometry imaging heatmaps </description> <requirements> <requirement type="package" version="1.10.0">bioconductor-cardinal</requirement> <requirement type="package" version="2.2.1">r-gridextra</requirement> <requirement type="package" version="0.20-35">r-lattice</requirement> </requirements> <command detect_errors="aggressive"> <![CDATA[ #if $infile.ext == 'imzml' ln -s '${infile.extra_files_path}/imzml' infile.imzML && ln -s '${infile.extra_files_path}/ibd' infile.ibd && #elif $infile.ext == 'analyze75' ln -s '${infile.extra_files_path}/hdr' infile.hdr && ln -s '${infile.extra_files_path}/img' infile.img && ln -s '${infile.extra_files_path}/t2m' infile.t2m && #else ln -s $infile infile.RData && #end if cat '${MSI_heatmaps}' && Rscript '${MSI_heatmaps}' ]]> </command> <configfiles> <configfile name="MSI_heatmaps"><![CDATA[ ################################# load libraries and read file ################# library(Cardinal) library(gridExtra) library(lattice) ## Read MALDI Imaging dataset #if $infile.ext == 'imzml' msidata = readImzML('infile') #elif $infile.ext == 'analyze75' msidata = readAnalyze('infile') #else load('infile.RData') #end if ###################################### file properties in numbers ############## ## Number of features (mz) maxfeatures = length(features(msidata)) ## Range mz minmz = round(min(mz(msidata)), digits=2) maxmz = round(max(mz(msidata)), digits=2) ## Number of spectra (pixels) pixelcount = length(pixels(msidata)) ## Range x coordinates minimumx = min(coord(msidata)[,1]) maximumx = max(coord(msidata)[,1]) ## Range y coordinates minimumy = min(coord(msidata)[,2]) maximumy = max(coord(msidata)[,2]) ## Range of intensities minint = round(min(spectra(msidata)[]), digits=2) maxint = round(max(spectra(msidata)[]), digits=2) medint = round(median(spectra(msidata)[]), digits=2) ## Number of intensities > 0 npeaks= sum(spectra(msidata)[]>0) ## Spectra multiplied with mz (potential number of peaks) numpeaks = ncol(spectra(msidata)[])*nrow(spectra(msidata)[]) ## Percentage of intensities > 0 percpeaks = round(npeaks/numpeaks*100, digits=2) ## Number of empty TICs TICs = colSums(spectra(msidata)[]) NumemptyTIC = sum(TICs == 0) ## Processing informations processinginfo = processingData(msidata) centroidedinfo = processinginfo@centroided # TRUE or FALSE ## if TRUE write processinginfo if no write FALSE ## normalization if (length(processinginfo@normalization) == 0) { normalizationinfo='FALSE' } else { normalizationinfo=processinginfo@normalization } ## smoothing if (length(processinginfo@smoothing) == 0) { smoothinginfo='FALSE' } else { smoothinginfo=processinginfo@smoothing } ## baseline if (length(processinginfo@baselineReduction) == 0) { baselinereductioninfo='FALSE' } else { baselinereductioninfo=processinginfo@baselineReduction } ## peak picking if (length(processinginfo@peakPicking) == 0) { peakpickinginfo='FALSE' } else { peakpickinginfo=processinginfo@peakPicking } ##################################### read and filter input masses ############## input_list = read.delim("$massfile", header = FALSE, stringsAsFactors = FALSE) ### in case input file had only one column with mz values but not names, duplicate mz values and use as names: if (ncol(input_list) == 1) { input_list = cbind(input_list, input_list) } ### calculate how many input masses are valid: inputmasses = input_list[input_list[,1]>minmz & input_list[,1]<maxmz,] inputmz = inputmasses[,1] inputnames = inputmasses[,2] if (length(inputmz) == 1) { countpixels = sum(spectra(msidata)[features(msidata, mz = inputmz), ] >0) percentpixels = round(countpixels/pixelcount*100, digits=1) valuesdataframe = cbind(inputmz, cbind(countpixels, percentpixels)) write.table(valuesdataframe, file="$pixel_count", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") }else if (length(inputmz) >1) { countpixels = rowSums(spectra(msidata)[features(msidata, mz=inputmz),] >0) percentpixels = round(countpixels/pixelcount*100, digits=1) valuesdataframe = cbind(inputmz, cbind(countpixels, percentpixels)) write.table(valuesdataframe, file="$pixel_count", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") }else{ valuesdataframe = data.frame(0,0) write.table(valuesdataframe, file="$pixel_count", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") } ############################ summarize file properties in numbers ############## properties = c("Number of mz features", "Range of mz values [Da]", "Number of pixels", "Range of x coordinates", "Range of y coordinates", "Range of intensities", "Median of intensities", "Intensities > 0", "Number of zero TICs", "Preprocessing", "Normalization", "Smoothing", "Baseline reduction", "Peak picking", "Centroided", paste0("# valid masses in \n", "$massfile.display_name")) values = c(paste0(maxfeatures), paste0(minmz, " - ", maxmz), paste0(pixelcount), paste0(minimumx, " - ", maximumx), paste0(minimumy, " - ", maximumy), paste0(minint, " - ", maxint), paste0(medint), paste0(percpeaks, " %"), paste0(NumemptyTIC), paste0(" "), paste0(normalizationinfo), paste0(smoothinginfo), paste0(baselinereductioninfo), paste0(peakpickinginfo), paste0(centroidedinfo), paste0(length(inputmz), "/", length(input_list[,1]))) property_df = data.frame(properties, values) ############################## PDF ############################################# pdf("heatmaps.pdf", fonts = "Times", pointsize = 12) plot(0,type='n',axes=FALSE,ann=FALSE) #if not $filename: #set $filename = $infile.display_name #end if title(main=paste("\nHeatmap images\n\n", "Filename:\n", "$filename")) ############################# I) numbers #################################### grid.table(property_df, rows= NULL) ############################# II) images #################################### ### only plot images when file has peaks and valid input mz: if (npeaks > 0) { if (length(inputmz) != 0) { for (mass in 1:length(inputmz)) { print(image(msidata, mz=inputmz[mass], strip = strip.custom(bg="lightgrey", par.strip.text=list(col="black", cex=.9)), lattice=TRUE, plusminus = $plusminus_dalton, contrast.enhance = "$image_contrast", smooth.image = "$image_smoothing", main= paste0(mass, ") ", inputnames[mass], " (", round(inputmz[mass], digits = 2)," ± ", $plusminus_dalton, " Da)"))) } } else {print("The input masses were invalid")} dev.off() }else{ print("inputfile has no intensities > 0") dev.off() } ]]></configfile> </configfiles> <inputs> <param name="infile" type="data" format="imzml,rdata,analyze75" label="Inputfile as imzML, Analyze7.5 or Cardinal MSImageSet saved as RData" help="Upload composite datatype imzml (ibd+imzML) or analyze75 (hdr+img+t2m) or regular upload .RData (Cardinal MSImageSet)"/> <param name="filename" type="text" value="" label="Title" help="will appear in the quality report. If nothing given it will take the dataset name"/> <param name="massfile" type="data" format="tabular" label="Tabular file with masses and names" help="first column mass (m/z), second column mass name, tab separated file"/> <param name="image_contrast" type="select" label="Select a contrast enhancement function for the heatmap images" help="The 'histogram' equalization method flatterns the distribution of intensities. The hotspot 'suppression' method uses thresholding to reduce the intensities of hotspots"> <option value="none" selected="True">none</option> <option value="suppression">suppression</option> <option value="histogram">histogram</option> </param> <param name="image_smoothing" type="select" label="Select an image smoothing function for the heatmap images" help="The 'gaussian' smoothing method smooths images with a simple gaussian kernel. The 'adaptive' method uses bilateral filtering to preserve edges"> <option value="none" selected="True">none</option> <option value="gaussian">gaussian</option> <option value="adaptive">adaptive</option> </param> <param name="plusminus_dalton" value="0.25" type="float" label="Mass range" help="plusminus mass window in Dalton"/> </inputs> <outputs> <data format="pdf" name="plots" from_work_dir="heatmaps.pdf" label = "${tool.name} ${on_string}"/> <data format="tabular" name="pixel_count" label="Number of peaks (intensity > 0) per mz"/> </outputs> <tests> <test> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML"/> <composite_data value="Example_Continuous.ibd"/> </param> <param name="massfile" value="inputpeptides.tabular" ftype="tabular"/> <param name="plusminus_dalton" value="0.25"/> <param name="filename" value="Testfile_imzml"/> <param name="image_contrast" value="histogram"/> <output name="plots" file="Heatmaps_imzml.pdf" compare="sim_size" delta="20000"/> <output name="pixel_count" file="tabular_imzml.tabular"/> </test> <test> <param name="infile" value="" ftype="analyze75"> <composite_data value="Analyze75.hdr"/> <composite_data value="Analyze75.img"/> <composite_data value="Analyze75.t2m"/> </param> <param name="massfile" value="inputpeptides2.tabular" ftype="tabular"/> <param name="plusminus_dalton" value="0.5"/> <param name="filename" value="Testfile_analyze75"/> <param name="image_smoothing" value="gaussian"/> <output name="plots" file="Heatmaps_analyze75.pdf" compare="sim_size" delta="20000"/> <output name="pixel_count" file="tabular_analyze75.tabular"/> </test> <test> <param name="infile" value="preprocessed.rdata" ftype="rdata"/> <param name="massfile" value="inputpeptides.tabular" ftype="tabular"/> <param name="plusminus_dalton" value="0.5"/> <param name="filename" value="Testfile_rdata"/> <output name="plots" file="Heatmaps_rdata.pdf" compare="sim_size" delta="20000"/> <output name="pixel_count" file="tabular_rdata.tabular"/> </test> <test> <param name="infile" value="empty_spectra.rdata" ftype="rdata"/> <param name="massfile" value="inputpeptides2.tabular" ftype="tabular"/> <param name="plusminus_dalton" value="0.5"/> <param name="filename" value="Testfile_rdata"/> <output name="plots" file="Heatmaps_LM8_file16.pdf" compare="sim_size" delta="20000"/> <output name="pixel_count" file="tabular_LM8file16.tabular"/> </test> </tests> <help><![CDATA[ Cardinal is an R package that implements statistical & computational tools for analyzing mass spectrometry imaging datasets. `More information on Cardinal <http://cardinalmsi.org//>`_ This tool uses the Cardinal image function to plot the intensity distribution of interesting masses of mass-spectrometry imaging data. Input data: 3 types of mass-spectrometry imaging data can be used: - imzml file (upload imzml and ibd file via the "composite" function) `Introduction to the imzml format <https://ms-imaging.org/wp/imzml/>`_ - Analyze7.5 (upload hdr, img and t2m file via the "composite" function) - Cardinal "MSImageSet" data (with variable name "msidata", saved as .RData) Tabular file with masses: - tab separated file (.tabular), datatype in Galaxy must be tabular otherwise file will not appear in selection window (if Galaxy auto-detection was wrong, datatype can be changed by pressing button with the pen (edit attributes)) - first column must contain masses (separate point numbers by point, not comma) - optionally a second column with names for the masses can be provided - no empty fields or letters are allowed in the first column Output: - Pdf with the heatmap images - Tabular with masses that were in the mass range and their occurence over all pixels (absolute and in %) Troubleshooting: - no heatmaps are plotted when tabular file doesn't fulfill the criteria described above - no heatmaps are plotted when the input mass spectrometry imaging file has no intensities > 0 - out of thetabular file only masses with > 1.5-2% pixel coverage can be used with the contrast enhance and image smoothing functions, as both crash when a mass has not enough intensity values ]]> </help> <citations> <citation type="doi">10.1093/bioinformatics/btv146</citation> </citations> </tool>