Mercurial > repos > galaxyp > msi_preprocessing
view msi_preprocessing.xml @ 0:74fcb3c95a53 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/msi_preprocessing commit c4e490c83537b39418b5f09d624f7d4da3f3ad55
author | galaxyp |
---|---|
date | Tue, 31 Oct 2017 15:05:05 -0400 |
parents | |
children | c4abf42419c2 |
line wrap: on
line source
<tool id="mass_spectrometry_imaging_preprocessing" name="MSI preprocessing" version="1.7.0"> <description> mass spectrometry imaging preprocessing </description> <requirements> <requirement type="package" version="1.7.0">bioconductor-cardinal</requirement> </requirements> <command detect_errors="exit_code"> <![CDATA[ #if $infile.ext == 'imzml' cp '${infile.extra_files_path}/imzml' infile.imzML && cp '${infile.extra_files_path}/ibd' infile.ibd && #elif $infile.ext == 'analyze75' cp '${infile.extra_files_path}/hdr' infile.hdr && cp '${infile.extra_files_path}/img' infile.img && cp '${infile.extra_files_path}/t2m' infile.t2m && #else ln -s '$infile' infile.RData && #end if cat '${cardinal_preprocessing}' && Rscript '${cardinal_preprocessing}' ]]> </command> <configfiles> <configfile name="cardinal_preprocessing"><![CDATA[ library(Cardinal) #if $infile.ext == 'imzml' msidata <- readMSIData('infile.imzML') #elif $infile.ext == 'analyze75' msidata <- readMSIData('infile.hdr') #else load('infile.RData') #end if maxpixel = length(pixels(msidata)) pixelnumber = c(1:maxpixel) #for $method in $methods: #if str( $method.methods_conditional.preprocessing_method ) == 'Normalization': print('Normalization') ##normalization msidata <- normalize(msidata, pixel=pixelnumber, method="tic") #elif str( $method.methods_conditional.preprocessing_method ) == 'Baseline_reduction': print('Baseline_reduction') ##baseline reduction msidata = reduceBaseline(msidata, pixel=pixelnumber, method="median", blocks=$method.methods_conditional.blocks_baseline) #elif str( $method.methods_conditional.preprocessing_method ) == 'Smoothing': print('Smoothing') ## Smoothing #if str( $method.methods_conditional.methods_for_smoothing.smoothing_method) == 'gaussian': print('gaussian smoothing') msidata <- smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, sd = $method.methods_conditional.methods_for_smoothing.sd_gaussian) #elif str( $method.methods_conditional.methods_for_smoothing.smoothing_method) == 'sgolay': print('sgolay smoothing') msidata <- smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, order = $method.methods_conditional.methods_for_smoothing.order_of_filters) #elif str($method.methods_conditional.methods_for_smoothing.smoothing_method) == 'ma': print('sgolay smoothing') msidata <- smoothSignal(msidata, method="$method.methods_conditional.methods_for_smoothing.smoothing_method", window=$method.methods_conditional.window_smoothing, coef = $method.methods_conditional.methods_for_smoothing.coefficients_ma_filter) #end if #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_picking': print('Peak_picking') ## Peakpicking #if str( $method.methods_conditional.methods_for_picking.picking_method) == 'adaptive': print('adaptive peakpicking') msidata = peakPick(msidata, pixel=pixelnumber, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method, spar=$method.methods_conditional.methods_for_picking.spar_picking) #elif str( $method.methods_conditional.methods_for_picking.picking_method) == 'limpic': print('limpic peakpicking') msidata = peakPick(msidata, pixel=pixelnumber, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method, thresh=$method.methods_conditional.methods_for_picking.tresh_picking) #elif str( $method.methods_conditional.methods_for_picking.picking_method) == 'simple': print('simple peakpicking') msidata = peakPick(msidata, pixel=pixelnumber, window = $method.methods_conditional.window_picking, blocks = $method.methods_conditional.blocks_picking, method='$method.methods_conditional.methods_for_picking.picking_method', SNR=$method.methods_conditional.SNR_picking_method) #end if #elif str( $method.methods_conditional.preprocessing_method ) == 'Peak_alignment': print('Peak_alignment') ## Peakalignment #if str( $method.methods_conditional.methods_for_alignment.alignment_method) == 'diff': print('diff peaklignment') msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',diff.max =$method.methods_conditional.methods_for_alignment.value_diffalignment, units = "$method.methods_conditional.methods_for_alignment.units_diffalignment") #elif str( $method.methods_conditional.methods_for_alignment.alignment_method) == 'DP': print('DPpeaklignment') msidata = peakAlign(msidata, method='$method.methods_conditional.methods_for_alignment.alignment_method',gap = $method.methods_conditional.methods_for_alignment.gap_DPalignment ) #end if #elif str( $method.methods_conditional.preprocessing_method) == 'Peak_filtering': print('Peak_filtering') msidata = peakFilter(msidata, method='freq', freq.min = $method.methods_conditional.frequ_filtering) #end if #end for ## save as as (.RData) save(msidata, file="$msidata_preprocessed") ## save as intensity matrix (.csv) csvmatrix = spectra(msidata) rownames(csvmatrix) = mz(msidata) newmatrix = rbind(pixels(msidata), csvmatrix) write.csv(newmatrix[2:nrow(newmatrix),], file="$preprocessed_intensity_matrix") ]]></configfile> </configfiles> <inputs> <param name="infile" type="data" format="imzml,rdata,analyze75" label="MSI rawdata as imzml or Cardinal MSImageSet saved as RData" help="load imzml and ibd file by uploading composite datatype imzml"/> <repeat name="methods" title="Preprocessing" min="1" max="50"> <conditional name="methods_conditional"> <param name="preprocessing_method" type="select" label="Select the preprocessing methods you want to apply"> <option value="Normalization" selected="True">Normalization to TIC</option> <option value="Baseline_reduction">Baseline Reduction</option> <option value="Smoothing">Peak smoothing</option> <option value="Peak_picking">Peak picking</option> <option value="Peak_alignment">Peak alignment</option> <option value="Peak_filtering">Peak filtering</option> </param> <when value="Normalization"/> <when value="Baseline_reduction"> <param name="blocks_baseline" type="integer" value="50" label="blocks"/> </when> <when value="Smoothing"> <conditional name="methods_for_smoothing"> <param name="smoothing_method" type="select" label="Smoothing method"> <option value="gaussian" selected="True">gaussian</option> <option value="sgolay">Savitsky-Golay</option> <option value="ma">moving average</option> </param> <when value="gaussian"> <param name="sd_gaussian" type="float" value="4" label="The standard deviation for the Gaussian kernel (window/sd)"/> </when> <when value="sgolay"> <param name="order_of_filters" type="integer" value="3" label="The order of the smoothing filter"/> </when> <when value="ma"> <param name="coefficients_ma_filter" type="integer" value="1" label="The coefficients for the moving average filter"/> </when> </conditional> <param name="window_smoothing" type="integer" value="9" label="Window size"/> </when> <when value="Peak_picking"> <param name="SNR_picking_method" type="integer" value="3" label="Signal to noise ratio" help="The minimal signal to noise ratio for peaks to be considered as a valid peak."/> <param name="blocks_picking" type="integer" value="100" label = "number of blocks" help="Number of blocks in which to divide mass spectrum to calculate noise"/> <param name="window_picking" type="integer" value="5" label= "window size" help="Window width for seeking local maxima"/> <conditional name="methods_for_picking"> <param name="picking_method" type="select" label="Peak picking method" help = "only simple works for processed imzML files"> <option value="adaptive" selected="True">adaptive</option> <option value="limpic">limpic</option> <option value="simple">simple</option> </param> <when value="adaptive"> <param name="spar_picking" type="float" value="1.0" label="spar value" help = "Smoothing parameter for the spline smoothing applied to the spectrum in order to decide the cutoffs for throwing away false noise spikes that might occur inside peaks"/> </when> <when value="limpic"> <param name="tresh_picking" type="float" value="0.75" label="thresh value" help = "The thresholding quantile to use when comparing slopes in order to throw away peaks that are too flat"/> </when> <when value="simple"/> </conditional> </when> <when value="Peak_alignment"> <conditional name="methods_for_alignment"> <param name="alignment_method" type="select" label="Alignment method"> <option value="diff" selected="True">diff</option> <option value="DP">DP</option> </param> <when value="diff"> <param name="value_diffalignment" type="integer" value="200" label="diff.max" help="Peaks that differ less than this value will be aligned together"/> <param name="units_diffalignment" type="select" display = "radio" optional = "False" label="units" help= "The coefficients for the moving average filter"> <option value="ppm" selected="True">ppm</option> <option value="Da">Da</option> </param> </when> <when value="DP"> <param name="gap_DPalignment" type="integer" value="0" label="gap" help = "The gap penalty for the dynamic programming sequence alignment"/> </when> </conditional> </when> <when value="Peak_filtering"> <param name="frequ_filtering" type="float" value="1" label="freq.min" help = "Peaks that occur in the dataset fewer times than this will be removed"/> </when> </conditional> </repeat> </inputs> <outputs> <data format="rdata" name="msidata_preprocessed" label="Preprocessed_output"/> <data format="csv" name="preprocessed_intensity_matrix" label="preprocessed intensity matrix" /> </outputs> <tests> <test> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML" ftype="imzml"/> <composite_data value="Example_Continuous.ibd" ftype="ibd"/> </param> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Normalization" /> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Smoothing" /> <conditional name="methods_for_smoothing"> <param name="smoothing_method" value="sgolay" /> </conditional> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_picking" /> <conditional name="methods_for_picking"> <param name="picking_method" value="adaptive" /> </conditional> <param name="blocks_picking" value="3" /> <param name="window_picking" value="3" /> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_alignment" /> <conditional name="methods_for_alignment"> <param name="alignment_method" value="DP" /> </conditional> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_filtering" /> </conditional> </repeat> <output name="msidata_preprocessed" file="preprocessing_results1.RData" compare="sim_size" /> <output name="preprocessed_intensity_matrix" file="preprocessing_results1.csv" /> </test> <test> <param name="infile" value="LM5_first68pixel.RData" ftype="rdata"/> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Baseline_reduction" /> <param name="blocks_baseline" value="50" /> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_picking" /> <param name="blocks_picking" value="3" /> <param name="window_picking" value="5" /> <param name="methods_for_picking" value="simple" /> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_alignment" /> <param name="methods_for_alignment" value="DP" /> </conditional> </repeat> <output name="msidata_preprocessed" file="preprocessing_results2.RData" compare="sim_size" /> <output name="preprocessed_intensity_matrix" file="preprocessing_results2.csv" lines_diff="2"/> </test> <test> <param name="infile" value="" ftype="analyze75"> <composite_data value="Analyze75.hdr" ftype="hdr"/> <composite_data value="Analyze75.img" ftype="img"/> <composite_data value="Analyze75.t2m" ftype="t2m"/> </param> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Normalization" /> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Smoothing" /> <conditional name="methods_for_smoothing"> <param name="smoothing_method" value="gaussian" /> </conditional> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_picking" /> <param name="blocks_picking" value="3" /> <param name="window_picking" value="5" /> <param name="methods_for_picking" value="limpic" /> </conditional> </repeat> <repeat name="methods"> <conditional name="methods_conditional"> <param name="preprocessing_method" value="Peak_alignment" /> <param name="methods_for_alignment" value="diff" /> </conditional> </repeat> <output name="msidata_preprocessed" file="preprocessing_results3.RData" compare="sim_size" /> <output name="preprocessed_intensity_matrix" file="preprocessing_results3.csv" /> </test> </tests> <help> <![CDATA[ Cardinal is an R package that implements statistical & computational tools for analyzing mass spectrometry imaging datasets. **Preprocessing steps:** - Smoothening: Smoothing of the mass peaks reduces noise and improves peak detection - Normalization: Normalization of intensities to total ion current (TIC) - Baseline reduction: Baseline reduction removes backgroundintensity generated by chemical noise (common in MALDI datasets) - Peak picking: relevant peaks are picked while noise-peaks are removed - Peak alignment: mz inaccuracies are removed by alignment of same peaks to a common mz value - Peak filtering: removes peaks that occur infrequently, such as those which only occur in a small proportion of pixels ]]> </help> <citations> <citation type="doi">10.1093/bioinformatics/btv146</citation> </citations> </tool>