Mercurial > repos > galaxyp > msi_spectra_plot
view msi_spectra_plots.xml @ 0:c93ae3463b30 draft
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/msi_spectra_plot commit 6d271de132f364b1e16b0222ad2d6e315586f0dd
author | galaxyp |
---|---|
date | Mon, 27 Nov 2017 13:50:11 -0500 |
parents | |
children | 7caaf84a8a51 |
line wrap: on
line source
<tool id="mass_spectrometry_imaging_mzplots" name="MSI massspectra" version="1.7.0"> <description> mass spectrometry imaging mass spectra plots </description> <requirements> <requirement type="package" version="1.7.0">bioconductor-cardinal</requirement> <requirement type="package" version="2.2.1">r-gridextra</requirement> <requirement type="package" version="2.23-15">r-kernsmooth</requirement> </requirements> <command detect_errors="exit_code"> <![CDATA[ #if $infile.ext == 'imzml' cp '${infile.extra_files_path}/imzml' infile.imzML && cp '${infile.extra_files_path}/ibd' infile.ibd && #elif $infile.ext == 'analyze75' cp '${infile.extra_files_path}/hdr' infile.hdr && cp '${infile.extra_files_path}/img' infile.img && cp '${infile.extra_files_path}/t2m' infile.t2m && #else ln -s $infile infile.RData && #end if cat '${MSI_mzplots}' && Rscript '${MSI_mzplots}' ]]> </command> <configfiles> <configfile name="MSI_mzplots"><![CDATA[ ################################# load libraries and read file ######################### library(Cardinal) library(gridExtra) library(KernSmooth) ## Read MALDI Imaging dataset #if $infile.ext == 'imzml' msidata <- readMSIData('infile.imzML') #elif $infile.ext == 'analyze75' msidata <- readMSIData('infile.hdr') #else load('infile.RData') #end if ###################################### file properties in numbers ###################### ## Number of features (mz) maxfeatures = length(features(msidata)) ## Range mz minmz = round(min(mz(msidata)), digits=2) maxmz = round(max(mz(msidata)), digits=2) ## Number of spectra (pixels) pixelcount = length(pixels(msidata)) ## Range x coordinates minimumx = min(coord(msidata)[,1]) maximumx = max(coord(msidata)[,1]) ## Range y coordinates minimumy = min(coord(msidata)[,2]) maximumy = max(coord(msidata)[,2]) ## Range of intensities minint = round(min(spectra(msidata)[]), digits=2) maxint = round(max(spectra(msidata)[]), digits=2) medint = round(median(spectra(msidata)[]), digits=2) ## Number of intensities > 0 npeaks= sum(spectra(msidata)[]>0) ## Spectra multiplied with mz (potential number of peaks) numpeaks = ncol(spectra(msidata)[])*nrow(spectra(msidata)[]) ## Percentage of intensities > 0 percpeaks = round(npeaks/numpeaks*100, digits=2) ## Number of empty TICs TICs = colSums(spectra(msidata)[]) NumemptyTIC = sum(TICs == 0) ## Processing informations processinginfo = processingData(msidata) centroidedinfo = processinginfo@centroided # TRUE or FALSE ## if TRUE write processinginfo if no write FALSE ## normalization if (length(processinginfo@normalization) == 0) { normalizationinfo='FALSE' } else { normalizationinfo=processinginfo@normalization } ## smoothing if (length(processinginfo@smoothing) == 0) { smoothinginfo='FALSE' } else { smoothinginfo=processinginfo@smoothing } ## baseline if (length(processinginfo@baselineReduction) == 0) { baselinereductioninfo='FALSE' } else { baselinereductioninfo=processinginfo@baselineReduction } ## peak picking if (length(processinginfo@peakPicking) == 0) { peakpickinginfo='FALSE' } else { peakpickinginfo=processinginfo@peakPicking } properties = c("Number of mz features", "Range of mz values [Da]", "Number of pixels", "Range of x coordinates", "Range of y coordinates", "Range of intensities", "Median of intensities", "Intensities > 0", "Number of zero TICs", "Preprocessing", "Normalization", "Smoothing", "Baseline reduction", "Peak picking", "Centroided") values = c(paste0(maxfeatures), paste0(minmz, " - ", maxmz), paste0(pixelcount), paste0(minimumx, " - ", maximumx), paste0(minimumy, " - ", maximumy), paste0(minint, " - ", maxint), paste0(medint), paste0(percpeaks, " %"), paste0(NumemptyTIC), paste0(" "), paste0(normalizationinfo), paste0(smoothinginfo), paste0(baselinereductioninfo), paste0(peakpickinginfo), paste0(centroidedinfo)) property_df = data.frame(properties, values) ######################################## PDF ############################################# ########################################################################################## ########################################################################################## pdf("mzplots.pdf", fonts = "Times", pointsize = 12) plot(0,type='n',axes=FALSE,ann=FALSE) title(main=paste0("Plotted mass spectra for file: \n\n", "$infile.display_name")) ############################# I) numbers #################################### ############################################################################# grid.table(property_df, rows= NULL) counting = 2 outputmatrix = matrix(mz(msidata), ncol=1, byrow=TRUE) colnames(outputmatrix) = "m/z" if (npeaks > 0) { pixeldf = data.frame(matrix(ncol = 2, nrow=0)) #for $chosenpixel in $repeatpixel: ### is x and y which was put in to define pixel valid coordinates? pixelisvalid = as.character($chosenpixel.inputx %in% coord(msidata)\$x & $chosenpixel.inputy %in% coord(msidata)\$y) pixelname = paste0("x=", $chosenpixel.inputx,", ", "y=", $chosenpixel.inputy) pixeldf = rbind(pixeldf, cbind(pixelname, pixelisvalid)) ############################# II) control image ############################# ############################################################################# if (pixelisvalid == "TRUE") { image(msidata, mz=$chosenpixel.inputmz, ylim = c(maximumy+(0.2*maximumy),minimumy-1),colorkey=FALSE, plusminus = $chosenpixel.plusminusinDalton, contrast.enhance = "histogram", main= paste0("x= ",$chosenpixel.inputx, ", y= ", $chosenpixel.inputy)) abline(v=$chosenpixel.inputx, col ="$chosenpixel.inputcolour", lty="$chosenpixel.inputtype", lwd=$chosenpixel.inputwidth) abline(h=$chosenpixel.inputy, col ="$chosenpixel.inputcolour", lty="$chosenpixel.inputtype", lwd=$chosenpixel.inputwidth) ##################### III) plot full mass spectrum ########################## ############################################################################# plot(msidata, coord=list(x=$chosenpixel.inputx, y=$chosenpixel.inputy)) ##################### IV) plot zoom-in mass spectrum ########################## ############################################################################# #if $chosenpixel.zoomedplot: #for $token in $chosenpixel.zoomedplot: minmasspixel = features(msidata, mz=$token.xlimmin) maxmasspixel = features(msidata, mz=$token.xlimmax) plot(msidata[minmasspixel:maxmasspixel,], coord=list(x=$chosenpixel.inputx, y=$chosenpixel.inputy), xlim= c($token.xlimmin,$token.xlimmax)) #end for #end if ##################### V) Output with mz and intensities ##################### ############################################################################# ### for each repeat a new intensity column for the new pixel is added outputmatrix = cbind(outputmatrix, spectra(msidata)[,pixels(msidata, coord=list(x=$chosenpixel.inputx, y=$chosenpixel.inputy))]) colnames(outputmatrix)[counting] = paste0("x= ",$chosenpixel.inputx, ", y= ", $chosenpixel.inputy, " intensity") counting = counting+1 }else{ print("These pixel coordinates did not correspond to a real pixel")} #end for colnames(pixeldf) = c("pixel coordinates", "coordinates were found in this file") plot(0,type='n',axes=FALSE,ann=FALSE) title(main=paste0("Overview of chosen pixel for file:\n", "$infile.display_name")) grid.table(pixeldf, rows= NULL) dev.off() write.table(outputmatrix, file="$tabularmatrix", quote = FALSE, row.names = FALSE, col.names=TRUE, sep = "\t") }else{ print("Inputfile has no intensities > 0") dev.off() } ]]></configfile> </configfiles> <inputs> <param name="infile" type="data" format="imzml,rdata,analyze75" label="Inputfile as imzML, Analyze7.5 or Cardinal MSImageSet saved as RData" help="Upload composite datatype imzml (ibd+imzML) or analyze75 (hdr+img+t2m) or regular upload .RData (Cardinal MSImageSet)"/> <repeat name="repeatpixel" title="Plot mass spectra for pixel of interest" min="1" max="20"> <param name="inputx" type="integer" value="" label="x-coordinate of pixel of interest" help="x-value of the pixel of interest"/> <param name="inputy" type="integer" value="" label="y-coordinate of pixel of interest" help="y-value of the pixel of interest"/> <param name="inputmz" type="float" value="1296.7" label="Next parameters are to control heatmap image which will be plotted, here mz in Dalton" help="mz will be displayed as heatmap and the pixel of interest will be visualized by the intersection of two lines"/> <param name="plusminusinDalton" value="0.25" type="float" label="mass range for this mz value" help="plusminus mass window in Dalton"/> <param name="inputcolour" type="select" label="select the colour for the lines at x and y position"> <option value="white" selected="True">white</option> <option value="black">black</option> <option value="grey">grey</option> <option value="blue">blue</option> <option value="red">red</option> <option value="green">green</option> </param> <param name="inputtype" type="select" label="select the line type for the lines at x and y position"> <option value="solid" selected="True">solid</option> <option value="dashed">dashed</option> <option value="dotted">dotted</option> <option value="longdash">longdash</option> </param> <param name="inputwidth" type="integer" value="2" label="select the width of the lines at x and y position"/> <repeat name="zoomedplot" title="Zoomed in plots with mz min and mz max to define the plot window" min="0" max="50"> <param name="xlimmin" type="integer" value="" label="lower boundary in Dalton for plotting window" help="minimum mz for zoomed in window"/> <param name="xlimmax" type="integer" value="" label="upper boundary in Dalton for plotting window" help="maximum mz for zoomed in window"/> </repeat> </repeat> </inputs> <outputs> <data format="pdf" name="plots" from_work_dir="mzplots.pdf" label = "${tool.name} on $infile.display_name"/> <data format="tabular" name="tabularmatrix" label="${tool.name} on $infile.display_name" /> </outputs> <tests> <test> <param name="infile" value="" ftype="imzml"> <composite_data value="Example_Continuous.imzML"/> <composite_data value="Example_Continuous.ibd"/> </param> <repeat name="repeatpixel"> <param name="plusminusinDalton" value="0.25"/> <param name="inputx" value="3"/> <param name="inputy" value="3"/> <repeat name="zoomedplot"> <param name="xlimmin" value="550"/> <param name="xlimmax" value="555"/> </repeat> <repeat name="zoomedplot"> <param name="xlimmin" value="750"/> <param name="xlimmax" value="800"/> </repeat> <repeat name="zoomedplot"> <param name="xlimmin" value="400"/> <param name="xlimmax" value="420"/> </repeat> </repeat> <repeat name="repeatpixel"> <param name="plusminusinDalton" value="0.25"/> <param name="inputx" value="2"/> <param name="inputy" value="2"/> </repeat> <repeat name="repeatpixel"> <param name="plusminusinDalton" value="0.25"/> <param name="inputx" value="1"/> <param name="inputy" value="1"/> </repeat> <output name="plots" file="Plot_imzml.pdf" compare="sim_size" delta="20000"/> <output name="tabularmatrix" file="Matrix_imzml.txt"/> </test> <test> <param name="infile" value="" ftype="analyze75"> <composite_data value="Analyze75.hdr"/> <composite_data value="Analyze75.img"/> <composite_data value="Analyze75.t2m"/> </param> <repeat name="repeatpixel"> <param name="plusminusinDalton" value="0.25"/> <param name="inputx" value="5"/> <param name="inputy" value="2"/> <repeat name="zoomedplot"> <param name="xlimmin" value="840"/> <param name="xlimmax" value="850"/> </repeat> </repeat> <repeat name="repeatpixel"> <param name="plusminusinDalton" value="0.25"/> <param name="inputx" value="2"/> <param name="inputy" value="2"/> </repeat> <output name="plots" file="Plot_analyze75.pdf" compare="sim_size" delta="20000"/> <output name="tabularmatrix" file="Matrix_analyze75.txt"/> </test> <test> <param name="infile" value="preprocessing_results1.RData" ftype="rdata"/> <repeat name="repeatpixel"> <param name="plusminusinDalton" value="0.25"/> <param name="inputx" value="2"/> <param name="inputy" value="2"/> <repeat name="zoomedplot"> <param name="xlimmin" value="222"/> <param name="xlimmax" value="244"/> </repeat> </repeat> <output name="plots" file="Plot_rdata.pdf" compare="sim_size" delta="20000"/> <output name="tabularmatrix" file="Matrix_rdata.txt"/> </test> <test> <param name="infile" value="LM8_file16.rdata" ftype="rdata"/> <param name="plusminusinDalton" value="0.1"/> <param name="inputx" value="1"/> <param name="inputy" value="1"/> <repeat name="repeatpixel"> <param name="plusminusinDalton" value="0.25"/> <param name="inputx" value="2"/> <param name="inputy" value="2"/> <repeat name="zoomedplot"> <param name="xlimmin" value="1000"/> <param name="xlimmax" value="1050"/> </repeat> </repeat> <output name="plots" file="Plot_LM8_file16.pdf" compare="sim_size" delta="20000"/> <output name="tabularmatrix" file="Matrix_LM8.txt"/> </test> </tests> <help><![CDATA[ Returns a full mass-spectrum plot and peaklist output with masses and intensities for the chosen pixel. Input needs the x and the y coordinates of the pixel of interest. Additionally zoom into mass-spectra plots is possible by providing the minimum and maximum mz value to define the limits of the plot. To have a visual control that the right pixel was chosen, a heatmap of a mass in Dalton which can be specified will be plotted and two intersecting lines will show where the chosen pixel is located in the ion image. Input data: 3 types of input data can be used: - imzml file (upload imzml and ibd file via the "composite" function) `Introduction to the imzml format <http://ms-imaging.org/wp/introduction/>`_ - Analyze7.5 (upload hdr, img and t2m file via the "composite" function) - Cardinal "MSImageSet" data (with variable name "msidata", saved as .RData) The output of this tool contains a heatmap of the mass of interest with two lines intersecting at the pixel of interest. Then the full mass-spectrum plot is obtained and if chosen also several zoomed in mass spectra. A peaklist with masses and intensities for this pixel is exported as tabular file. ]]> </help> <citations> <citation type="doi">10.1093/bioinformatics/btv146</citation> </citations> </tool>