Mercurial > repos > galaxyp > mt2mq
comparison READme.md @ 3:08dda0f86758 draft
"planemo upload commit 98f9787ed5158179a5baf54cea3dbe70a02aaf59"
author | galaxyp |
---|---|
date | Wed, 21 Oct 2020 16:22:53 +0000 |
parents | |
children | b0de3731dca5 |
comparison
equal
deleted
inserted
replaced
2:9c8e7137d331 | 3:08dda0f86758 |
---|---|
1 MT2MQ | |
2 ========================================== | |
3 | |
4 Description | |
5 ----------- | |
6 | |
7 For multi-omics data analysis of microbiome data, the Galaxy-P team has developed a tool – MT2MQ – which takes in metatranscriptomics gene families | |
8 output from ASaiM workflow and converts it to GO/EC terms. This tool helps transform the metatranscriptomics output which can be then used as an input for | |
9 comparative statistical analysis via metaQuantome. | |
10 | |
11 Authors | |
12 ------- | |
13 | |
14 Authors and contributors: | |
15 | |
16 * Marie Crane | |
17 * Praveen Kumar | |
18 * Subina Mehta | |
19 * Dihn Duy An Nguyen | |
20 * Pratik Jagtap | |
21 | |
22 | |
23 # Instructions to run MT2MQ: | |
24 -------------------------- | |
25 | |
26 The ASAIM workflow can be run following the training module on the [GTN](https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/metatranscriptomics/tutorial.html). | |
27 However, for training purposes we have provided inputs in the [test data](https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/mt2mq/test-data). | |
28 | |
29 ## Data upload | |
30 | |
31 - Upload the files mentioned below to the Galaxy Europe instance. | |
32 ``` | |
33 https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T4A.tsv | |
34 https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T4B.tsv | |
35 https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T4C.tsv | |
36 https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T7A.tsv | |
37 https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T7B.tsv | |
38 https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T7C.tsv | |
39 https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T4T7_func.tsv | |
40 | |
41 ``` | |
42 | |
43 ## Functional mode: | |
44 | |
45 1. Build a **Dataset list** for the six .tsv files( `T4A`,`T4B`,`T4C`,`T7A`,`T7B`,`T7C`). | |
46 - Click the **Operations on multiple datasets** check box at the top of the history panel. | |
47 - Select the files mentioned above. | |
48 - Click on ** For all selected** drop down menu and select **Build Dataset list**. | |
49 - Once the collection is created, rename the dataset collection as `Input collection`. | |
50 | |
51 2. Download the map_go_uniref50.txt file from zenodo. | |
52 | |
53 3. Run the **Regroup a HUMAnN2 generated table by features**(Galaxy Version 0.11.1.0) tool is regrouping table features (abundances or coverage) given a table of feature values and a mapping of groups to component features. It produces a new table with group values in place of feature values. | |
54 - [**Regroup a HUMAnN2 generated table by features**](https://toolshed.g2.bx.psu.edu/repository?repository_id=85391b8d5d7ad39d) with the following parameters: | |
55 | |
56 - *"Gene/pathway table"*: `Input collection` | |
57 - *"How to combine grouped features?"*: `Sum` | |
58 - In *"Use built-in grouping options?"*: `No` | |
59 - *"Custom groups file"*: `map_go_uniref50.txt` | |
60 - *"Is the groups file reversed?"*: `No` | |
61 - *"Decimal places to round to after applying function"*: `3` | |
62 - *"Include an 'UNGROUPED' group to capture features that did not belong to other groups?"*: `Yes` | |
63 - *"Carry through protected features, such as 'UNMAPPED'?"*: `Yes` | |
64 | |
65 Once this tool is run, rename the dataset collection as `Regrouped collection` . | |
66 | |
67 4. Run the **Rename features of a HUMAnN2 generated table** (Galaxy Version 0.11.1.0)tool to change the Uniref-50 values to GO term . | |
68 - [**Rename features of a HUMAnN2 generated table**](https://toolshed.g2.bx.psu.edu/repository?repository_id=c68108109505c2f5) with the following parameters: | |
69 | |
70 - *"Gene/pathway table"*: `Regrouped collection` | |
71 - *"Type of renaming"*: `Standard renaming` | |
72 - *"Table features that can be renamed?"*: `Gene Ontology (GO)` | |
73 - *"Remove non-alphanumeric characters from names?"*: `No` | |
74 | |
75 Once this tool is run, rename the dataset collection as `Renamed collection`. | |
76 | |
77 | |
78 5. Run the **Join HUMAnN2 generated tables** (Galaxy Version 0.11.1.1) tool to merge all the files into one. | |
79 - [**Join HUMAnN2 generated tables**](https://toolshed.g2.bx.psu.edu/repository?repository_id=9b27f096128b26ff) with the following parameters: | |
80 | |
81 - *"Gene/pathway table"*: `Renamed collection` | |
82 | |
83 Once this tool is run, rename the dataset collection as `Joined Data`. | |
84 | |
85 6. Run the **Renormalize a HUMAnN2 generated table** (Galaxy Version 0.11.1.0) tool to normalize the data. | |
86 - [**Renormalize a HUMAnN2 generated table**](https://toolshed.g2.bx.psu.edu/repository?repository_id=05a56fcdeac2a25c) with the following parameters: | |
87 | |
88 - *"Gene/pathway table"*: `Joined Data` | |
89 - *"Normalization scheme"*: `Copies per million` | |
90 - *"Normalization level"*: `Normalization of all levels by community total` | |
91 - *"Include the special features UNMAPPED, UNINTEGRATED, and UNGROUPED?"*: `Yes` | |
92 - *"Update '-RPK' in sample names to appropriate suffix?"*: `No` | |
93 | |
94 Once this tool is run, rename the dataset collection as `Renormalized data`. | |
95 | |
96 | |
97 7. Now that the data is ready, we can run **MT2MQ Tool to prepare metatranscriptomic outputs from ASaiM for Metaquantome** (Galaxy Version 1.1.0)on this data. | |
98 - [**MT2MQ Tool to prepare metatranscriptomic outputs from ASaiM for Metaquantome**](https://toolshed.g2.bx.psu.edu/repository?repository_id=cab5d81c5f0a2f94) with the | |
99 following parameters: | |
100 - *"Mode"*: `Function` | |
101 - *"GO namespace"*: `Molecular Function` or `Biological Process` or ` Cellular Component` | |
102 - *"File from HUMAnN2 after regrouping, renaming, joining, and renormalizing"*: `Renormalized data` | |
103 | |
104 **Note** : The MT2MQ tools can be run will all three GO name space. | |
105 | |
106 There are two tabular outputs from this tool. | |
107 | |
108 - A f_int.tabular output which mimics the Intensity input file for metaQuantome. | |
109 - A func.tabular output which mimics the Functional input file for metaQuantome. | |
110 | |
111 The resulting output files can be used as input for metaQuatome's functional mode. | |
112 To run metaQuantome Function mode. Follow the [GTN](https://github.com/subinamehta/training-material/tree/metaquantome-2-3/topics/proteomics/tutorials/metaquantome-function). |