Mercurial > repos > galaxyp > mt2mq
view READme.md @ 5:c3a418f7cf7f draft
"planemo upload commit 499df83651e020e9106d70ec658edf86355f49d9"
author | galaxyp |
---|---|
date | Wed, 21 Oct 2020 16:39:25 +0000 |
parents | b0de3731dca5 |
children | 02fcbaf4cce5 |
line wrap: on
line source
MT2MQ ========================================== Description ----------- In order to enable multi-omics data analysis of microbiome data, the Galaxy-P team has developed a tool – MT2MQ – which processes metatranscriptomics gene families output from [ASaiM](https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/metatranscriptomics/tutorial.html) workflow and converts it to [Gene Ontology](http://geneontology.org/docs/ontology-documentation/) (GO) or EC terms. The processed metatranscriptomics output can be subsequently used as an input for comparative statistical analysis via [metaQuantome](https://www.mcponline.org/content/18/8_suppl_1/S82) software suite. Authors ------- Authors and contributors: * Marie Crane * Praveen Kumar * Subina Mehta * Dihn Duy An Nguyen * Pratik Jagtap # Instructions to run MT2MQ: -------------------------- The ASAIM workflow can be run following the training module on the [GTN](https://training.galaxyproject.org/training-material/topics/metagenomics/tutorials/metatranscriptomics/tutorial.html). However, for training purposes we have provided inputs in the [test data](https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/mt2mq/test-data). ## Data upload - Upload the files mentioned below to the Galaxy Europe instance. ``` https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T4A.tsv https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T4B.tsv https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T4C.tsv https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T7A.tsv https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T7B.tsv https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T7C.tsv https://github.com/galaxyproteomics/tools-galaxyp/blob/master/tools/mt2mq/test-data/T4T7_func.tsv ``` ## Functional mode: 1. Build a **Dataset list** for the six .tsv files( `T4A`,`T4B`,`T4C`,`T7A`,`T7B`,`T7C`). - Click the **Operations on multiple datasets** check box at the top of the history panel. - Select the files mentioned above. - Click on ** For all selected** drop down menu and select **Build Dataset list**. - Once the collection is created, rename the dataset collection as `Input collection`. 2. Download the map_go_uniref50.txt file from [zenodo](https://doi.org/10.5281/zenodo.4115871). 3. Run the **Regroup a HUMAnN2 generated table by features**(Galaxy Version 0.11.1.0) tool is regrouping table features (abundances or coverage) given a table of feature values and a mapping of groups to component features. It produces a new table with group values in place of feature values. - [**Regroup a HUMAnN2 generated table by features**](https://toolshed.g2.bx.psu.edu/repository?repository_id=85391b8d5d7ad39d) with the following parameters: - *"Gene/pathway table"*: `Input collection` - *"How to combine grouped features?"*: `Sum` - In *"Use built-in grouping options?"*: `No` - *"Custom groups file"*: `map_go_uniref50.txt` - *"Is the groups file reversed?"*: `No` - *"Decimal places to round to after applying function"*: `3` - *"Include an 'UNGROUPED' group to capture features that did not belong to other groups?"*: `Yes` - *"Carry through protected features, such as 'UNMAPPED'?"*: `Yes` Once this tool is run, rename the dataset collection as `Regrouped collection` . 4. Run the **Rename features of a HUMAnN2 generated table** (Galaxy Version 0.11.1.0)tool to change the Uniref-50 values to GO term . - [**Rename features of a HUMAnN2 generated table**](https://toolshed.g2.bx.psu.edu/repository?repository_id=c68108109505c2f5) with the following parameters: - *"Gene/pathway table"*: `Regrouped collection` - *"Type of renaming"*: `Standard renaming` - *"Table features that can be renamed?"*: `Gene Ontology (GO)` - *"Remove non-alphanumeric characters from names?"*: `No` Once this tool is run, rename the dataset collection as `Renamed collection`. 5. Run the **Join HUMAnN2 generated tables** (Galaxy Version 0.11.1.1) tool to merge all the files into one. - [**Join HUMAnN2 generated tables**](https://toolshed.g2.bx.psu.edu/repository?repository_id=9b27f096128b26ff) with the following parameters: - *"Gene/pathway table"*: `Renamed collection` Once this tool is run, rename the dataset collection as `Joined Data`. 6. Run the **Renormalize a HUMAnN2 generated table** (Galaxy Version 0.11.1.0) tool to normalize the data. - [**Renormalize a HUMAnN2 generated table**](https://toolshed.g2.bx.psu.edu/repository?repository_id=05a56fcdeac2a25c) with the following parameters: - *"Gene/pathway table"*: `Joined Data` - *"Normalization scheme"*: `Copies per million` - *"Normalization level"*: `Normalization of all levels by community total` - *"Include the special features UNMAPPED, UNINTEGRATED, and UNGROUPED?"*: `Yes` - *"Update '-RPK' in sample names to appropriate suffix?"*: `No` Once this tool is run, rename the dataset collection as `Renormalized data`. 7. Now that the data is ready, we can run **MT2MQ Tool to prepare metatranscriptomic outputs from ASaiM for Metaquantome** (Galaxy Version 1.1.0)on this data. - [**MT2MQ Tool to prepare metatranscriptomic outputs from ASaiM for Metaquantome**](https://toolshed.g2.bx.psu.edu/repository?repository_id=cab5d81c5f0a2f94) with the following parameters: - *"Mode"*: `Function` - *"GO namespace"*: `Molecular Function` or `Biological Process` or ` Cellular Component` - *"File from HUMAnN2 after regrouping, renaming, joining, and renormalizing"*: `Renormalized data` **Note** : The MT2MQ tools can be run will all three GO name space. There are two tabular outputs from this tool. - A f_int.tabular output which mimics the Intensity input file for metaQuantome. - A func.tabular output which mimics the Functional input file for metaQuantome. The resulting output files can be used as input for metaQuatome's functional mode. To run metaQuantome Function mode. Follow the [GTN](https://github.com/subinamehta/training-material/tree/metaquantome-2-3/topics/proteomics/tutorials/metaquantome-function).