Mercurial > repos > galaxyp > mt2mq
view MT2MQ.R @ 1:e50ec3a9a3f9 draft
"planemo upload commit c29eec0f6f72e212c6afa82bd0bc052b8f26f1ab"
author | galaxyp |
---|---|
date | Fri, 26 Jun 2020 11:15:17 -0400 |
parents | 6bee94458567 |
children | 9c8e7137d331 |
line wrap: on
line source
# MT2MQ: prepares metatranscriptomic outputs from ASaiM (HUMAnN2 and metaphlan) for metaquantome # Load libraries suppressPackageStartupMessages(library(tidyverse)) #default_locale() # Set parameters from arguments args = commandArgs(trailingOnly = TRUE) data <- args[1] # data: full path to file or directory: # - if in functional or f-t mode, should be a tsv file of HUMAnN2 gene families, after regrouping and renaming to GO, joining samples, and renormalizing to CPM. # - if in taxonomic mode, should be a directory of tsv files of metaphlan genus-level results mode <- args[2] # mode: # -"f": function # -"t": taxonomy # -"ft": function-taxonomy ontology <- unlist(strsplit(args[3], split = ",")) # ontology: only for function or f-t mode. A string of the GO namespace(s) to include, separated by commas. # ex: to include all: "molecular_function,biological_process,cellular_component" outfile <- args[4] # outfile: full path with pathname and extension for output # Functional mode if (mode == "f"){ out <- read.delim(file=data, header=TRUE, sep='\t') %>% filter(!grepl(".+g__.+",X..Gene.Family)) %>% separate(col=X..Gene.Family, into=c("id", "Extra"), sep=": ", fill="left") %>% separate(col=Extra, into = c("namespace", "name"), sep = " ", fill="left", extra="merge") %>% mutate(namespace = if_else(namespace == "[MF]", true = "molecular_function", false = if_else(namespace == "[BP]", true = "biological_process", false = "cellular_component"))) %>% filter(namespace %in% ontology) %>% select(id, name, namespace, 4:ncol(.)) } # Taxonomic mode if (mode == "t"){ files <- dir(path = data) out <- tibble(filename = files) %>% mutate(file_contents= map(filename, ~read.delim(file=file.path(data, .), header=TRUE, sep = "\t"))) %>% unnest(cols = c(file_contents)) %>% rename(sample = filename) %>% separate(col = sample, into = c("sample",NA), sep=".tsv") %>% pivot_wider(names_from = sample, values_from = abundance) %>% mutate(rank = "genus") %>% rename(name = genus) %>% mutate(id = row_number(name)) %>% # filler for taxon id but should eventually find a way to get id from ncbi database select(id, name, rank, 2:ncol(.)) } # Function-taxonomy mode if (mode == "ft"){ out <- read.delim(file=data, header=TRUE, sep='\t') %>% filter(grepl(".+g__.+",X..Gene.Family)) %>% separate(col=X..Gene.Family, into=c("id", "Extra"), sep=": ", fill="left") %>% separate(col=Extra, into = c("namespace", "name"), sep = " ", fill="left", extra="merge") %>% separate(col = name, into = c("name", "taxa"), sep="\\|", extra = "merge") %>% separate(col = taxa, into = c("Extra", "genus", "species"), sep = "__") %>% select(-"Extra") %>% mutate_if(is.character, str_replace_all, pattern = "\\.s", replacement = "") %>% mutate_at(c("species"), str_replace_all, pattern = "_", replacement = " ") %>% mutate(namespace = if_else(namespace == "[MF]", true = "molecular_function", false = if_else(namespace == "[BP]", true = "biological_process", false = "cellular_component"))) %>% filter(namespace %in% ontology) %>% select(id, name, namespace, 4:ncol(.)) } # Write file write.table(x = out, file = outfile, quote = FALSE, sep = "\t", row.names = FALSE)