2
|
1 <tool id="openms_feature_linker_unlabeled" version="0.1.0" name="Feature Linker (Labeled)">
|
|
2 <description>
|
|
3 Groups corresponding features from multiple maps.
|
|
4 </description>
|
|
5 <macros>
|
|
6 <import>macros.xml</import>
|
|
7 </macros>
|
|
8 <expand macro="stdio" />
|
|
9 <expand macro="requires" />
|
|
10 <command interpreter="python">
|
|
11 openms_wrapper.py --executable 'FeatureLinkedUnlabeled' --config $config
|
|
12 </command>
|
|
13 <configfiles>
|
|
14 <configfile name="config">[simple_options]
|
|
15 in=$input1
|
|
16 out=$output
|
|
17 </configfile>
|
|
18 </configfiles>
|
|
19 <inputs>
|
|
20 <conditional name="type">
|
|
21 <param name="input_type" type="select" label="Input Type">
|
|
22 <option value="featurexml">Features (FeatureXML)</option>
|
|
23 <option value="consensusxml">Consensus (ConsensusXML)</option>
|
|
24 </param>
|
|
25 <when value="featurexml">
|
|
26 <param format="featurexml" name="input1" type="data" label="Input Features" />
|
|
27 </when>
|
|
28 <when value="consensusxml">
|
|
29 <param format="consensusxml" name="input1" type="data" label="Input Consensus" />
|
|
30 </when>
|
|
31 </conditional>
|
|
32 </inputs>
|
|
33 <outputs>
|
|
34 <data format="consensusxml" name="output" />
|
|
35 </outputs>
|
|
36 <help>
|
|
37 **What it does**
|
|
38
|
|
39 This tool provides an algorithm for grouping corresponding features in multiple runs of label-free experiments. For more details and algorithm-specific parameters (set in the INI file) see "Detailed Description" in the algorithm documentation or the INI file table below.
|
|
40
|
|
41 FeatureLinkerUnlabeled takes several feature maps (featureXML files) and stores the corresponding features in a consensus map (consensusXML file). Feature maps can be created from MS experiments (peak data) using one of the FeatureFinder TOPP tools.
|
|
42
|
|
43 Advanced users can convert the consensusXML generated by this tool to EDTA using FileConverter and plot the distribution of distances in RT (or m/z) between different input files (can be done in Excel). The distribution should be Gaussian-like with very few points beyond the tails. Points far away from the Gaussian indicate a too wide tolerance. A Gaussian with its left/right tail trimmed indicates a too narrow tolerance.
|
|
44
|
|
45 **Citation**
|
|
46
|
|
47 For the underlying tool, please cite ``Marc Sturm, Andreas Bertsch, Clemens Gröpl, Andreas Hildebrandt, Rene Hussong, Eva Lange, Nico Pfeifer, Ole Schulz-Trieglaff, Alexandra Zerck, Knut Reinert, and Oliver Kohlbacher, 2008. OpenMS – an Open-Source Software Framework for Mass Spectrometry. BMC Bioinformatics 9: 163. doi:10.1186/1471-2105-9-163.``
|
|
48
|
|
49 If you use this tool in Galaxy, please cite Chilton J, et al. https://bitbucket.org/galaxyp/galaxyp-toolshed-openms
|
|
50 </help>
|
|
51 </tool>
|