Mercurial > repos > galaxyp > openms
diff id_posterior_error_probability.xml @ 2:cf0d72c7b482 draft
Update.
author | galaxyp |
---|---|
date | Fri, 10 May 2013 17:31:05 -0400 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/id_posterior_error_probability.xml Fri May 10 17:31:05 2013 -0400 @@ -0,0 +1,45 @@ +<tool id="openms_id_posterior_error_probability" version="0.1.0" name="ID Posterior Error Probability"> + <description> + Tool to estimate the probability of peptide hits to be incorrectly assigned. + </description> + <macros> + <import>macros.xml</import> + </macros> + <expand macro="stdio" /> + <expand macro="requires" /> + <command interpreter="python"> + openms_wrapper.py --executable 'IDPosteriorErrorProbability' --config $config + </command> + <configfiles> + <configfile name="config">[simple_options] +in=${input1} +out=${out} +split_charge=${split_charge} +top_hits_only=${top_hits_only} +</configfile> + </configfiles> + <inputs> + <param format="idxml" name="input1" type="data" label="idXML Input" /> + <param name="split_charge" type="boolean" label="Split Charge" help="The search engine scores are split by charge if this flag is set. Thus, for each charge state a new model will be computed." checked="false" truevalue="true" falsevalue="false" /> + <param name="top_hits_only" type="boolean" label="Use Only Top Hits" help="If set only the top hits of every PeptideIdentification will be used" checked="false" truevalue="true" falsevalue="false" /> + <!-- TODO: Advanced Options --> + </inputs> + <outputs> + <data format="idxml" name="out" /> + </outputs> + <help> +**What it does** + +By default an estimation is performed using the (inverse) Gumbel distribution for incorrectly assigned sequences and a Gaussian distribution for correctly assigned sequences. The probabilities are calculated by using Bayes' law, similar to PeptideProphet. Alternatively, a second Gaussian distribution can be used for incorrectly assigned sequences. At the moment, IDPosteriorErrorProbability is able to handle X!Tandem, Mascot, MyriMatch and OMSSA scores. + +No target/decoy information needs to be provided, since the model fits are done on the mixed distribution. + +In order to validate the computed probabilities one can adjust the fit_algorithm subsection. + +**Citation** + +For the underlying tool, please cite ``Marc Sturm, Andreas Bertsch, Clemens Gröpl, Andreas Hildebrandt, Rene Hussong, Eva Lange, Nico Pfeifer, Ole Schulz-Trieglaff, Alexandra Zerck, Knut Reinert, and Oliver Kohlbacher, 2008. OpenMS – an Open-Source Software Framework for Mass Spectrometry. BMC Bioinformatics 9: 163. doi:10.1186/1471-2105-9-163.`` + +If you use this tool in Galaxy, please cite Chilton J, et al. https://bitbucket.org/galaxyp/galaxyp-toolshed-openms + </help> +</tool>