Mercurial > repos > galaxyp > openms
view id_posterior_error_probability.xml @ 5:9816d9abb501 draft
Added repo dependencies
author | galaxyp |
---|---|
date | Thu, 20 Jun 2013 16:12:09 -0400 |
parents | cf0d72c7b482 |
children |
line wrap: on
line source
<tool id="openms_id_posterior_error_probability" version="0.1.0" name="ID Posterior Error Probability"> <description> Tool to estimate the probability of peptide hits to be incorrectly assigned. </description> <macros> <import>macros.xml</import> </macros> <expand macro="stdio" /> <expand macro="requires" /> <command interpreter="python"> openms_wrapper.py --executable 'IDPosteriorErrorProbability' --config $config </command> <configfiles> <configfile name="config">[simple_options] in=${input1} out=${out} split_charge=${split_charge} top_hits_only=${top_hits_only} </configfile> </configfiles> <inputs> <param format="idxml" name="input1" type="data" label="idXML Input" /> <param name="split_charge" type="boolean" label="Split Charge" help="The search engine scores are split by charge if this flag is set. Thus, for each charge state a new model will be computed." checked="false" truevalue="true" falsevalue="false" /> <param name="top_hits_only" type="boolean" label="Use Only Top Hits" help="If set only the top hits of every PeptideIdentification will be used" checked="false" truevalue="true" falsevalue="false" /> <!-- TODO: Advanced Options --> </inputs> <outputs> <data format="idxml" name="out" /> </outputs> <help> **What it does** By default an estimation is performed using the (inverse) Gumbel distribution for incorrectly assigned sequences and a Gaussian distribution for correctly assigned sequences. The probabilities are calculated by using Bayes' law, similar to PeptideProphet. Alternatively, a second Gaussian distribution can be used for incorrectly assigned sequences. At the moment, IDPosteriorErrorProbability is able to handle X!Tandem, Mascot, MyriMatch and OMSSA scores. No target/decoy information needs to be provided, since the model fits are done on the mixed distribution. In order to validate the computed probabilities one can adjust the fit_algorithm subsection. **Citation** For the underlying tool, please cite ``Marc Sturm, Andreas Bertsch, Clemens Gröpl, Andreas Hildebrandt, Rene Hussong, Eva Lange, Nico Pfeifer, Ole Schulz-Trieglaff, Alexandra Zerck, Knut Reinert, and Oliver Kohlbacher, 2008. OpenMS – an Open-Source Software Framework for Mass Spectrometry. BMC Bioinformatics 9: 163. doi:10.1186/1471-2105-9-163.`` If you use this tool in Galaxy, please cite Chilton J, et al. https://bitbucket.org/galaxyp/galaxyp-toolshed-openms </help> </tool>