view RTModel.xml @ 7:6d4530bc334c draft

planemo upload for repository https://github.com/galaxyproteomics/tools-galaxyp/tree/master/tools/openms commit f608f41d45664d04d3124c6ebc791bf8a566b3c5-dirty
author galaxyp
date Fri, 17 May 2019 10:25:59 -0400
parents c3da4387e137
children a9ece00a3e54
line wrap: on
line source

<?xml version='1.0' encoding='UTF-8'?>
<!--This is a configuration file for the integration of a tools into Galaxy (https://galaxyproject.org/). This file was automatically generated using CTDConverter.-->
<!--Proposed Tool Section: [Peptide property prediction]-->
<tool id="RTModel" name="RTModel" version="2.3.0">
  <description>Trains a model for the retention time prediction of peptides from a training set.</description>
  <macros>
    <token name="@EXECUTABLE@">RTModel</token>
    <import>macros.xml</import>
  </macros>
  <expand macro="references"/>
  <expand macro="stdio"/>
  <expand macro="requirements"/>
  <command detect_errors="aggressive"><![CDATA[RTModel

#if $param_in:
  -in $param_in
#end if
#if $param_in_positive:
  -in_positive $param_in_positive
#end if
#if $param_in_negative:
  -in_negative $param_in_negative
#end if
#if $param_out:
  -out $param_out
#end if
#if $param_out_oligo_params:
  -out_oligo_params $param_out_oligo_params
#end if
#if $param_out_oligo_trainset:
  -out_oligo_trainset $param_out_oligo_trainset
#end if
#if $param_svm_type:
  -svm_type
  #if " " in str($param_svm_type):
    "$param_svm_type"
  #else
    $param_svm_type
  #end if
#end if
#if $param_nu:
  -nu $param_nu
#end if
#if $param_p:
  -p $param_p
#end if
#if $param_c:
  -c $param_c
#end if
#if $param_kernel_type:
  -kernel_type
  #if " " in str($param_kernel_type):
    "$param_kernel_type"
  #else
    $param_kernel_type
  #end if
#end if
#if $param_degree:
  -degree $param_degree
#end if
#if $param_border_length:
  -border_length $param_border_length
#end if
#if $param_max_std:
  -max_std $param_max_std
#end if
#if $param_k_mer_length:
  -k_mer_length $param_k_mer_length
#end if
#if $param_sigma:
  -sigma $param_sigma
#end if
#if $param_total_gradient_time:
  -total_gradient_time $param_total_gradient_time
#end if
#if $param_first_dim_rt:
  -first_dim_rt
#end if
#if $param_additive_cv:
  -additive_cv
#end if
#if $param_cv_skip_cv:
  -cv:skip_cv
#end if
#if $param_cv_number_of_runs:
  -cv:number_of_runs $param_cv_number_of_runs
#end if
#if $param_cv_number_of_partitions:
  -cv:number_of_partitions $param_cv_number_of_partitions
#end if
#if $param_cv_degree_start:
  -cv:degree_start $param_cv_degree_start
#end if
#if $param_cv_degree_step_size:
  -cv:degree_step_size $param_cv_degree_step_size
#end if
#if $param_cv_degree_stop:
  -cv:degree_stop $param_cv_degree_stop
#end if
#if $param_cv_p_start:
  -cv:p_start $param_cv_p_start
#end if
#if $param_cv_p_step_size:
  -cv:p_step_size $param_cv_p_step_size
#end if
#if $param_cv_p_stop:
  -cv:p_stop $param_cv_p_stop
#end if
#if $param_cv_c_start:
  -cv:c_start $param_cv_c_start
#end if
#if $param_cv_c_step_size:
  -cv:c_step_size $param_cv_c_step_size
#end if
#if $param_cv_c_stop:
  -cv:c_stop $param_cv_c_stop
#end if
#if $param_cv_nu_start:
  -cv:nu_start $param_cv_nu_start
#end if
#if $param_cv_nu_step_size:
  -cv:nu_step_size $param_cv_nu_step_size
#end if
#if $param_cv_nu_stop:
  -cv:nu_stop $param_cv_nu_stop
#end if
#if $param_cv_sigma_start:
  -cv:sigma_start $param_cv_sigma_start
#end if
#if $param_cv_sigma_step_size:
  -cv:sigma_step_size $param_cv_sigma_step_size
#end if
#if $param_cv_sigma_stop:
  -cv:sigma_stop $param_cv_sigma_stop
#end if
#if $adv_opts.adv_opts_selector=='advanced':
    #if $adv_opts.param_force:
  -force
#end if
#end if
]]></command>
  <inputs>
    <param name="param_in" type="data" format="idxml,txt" optional="True" label="This is the name of the input file (RT prediction)" help="(-in) It is assumed that the file type is idXML. Alternatively you can provide a .txt file having a sequence and the corresponding rt per line. &lt;br&gt;"/>
    <param name="param_in_positive" type="data" format="idxml" optional="True" label="input file with positive examples (peptide separation prediction)" help="(-in_positive) "/>
    <param name="param_in_negative" type="data" format="idxml" optional="True" label="input file with negative examples (peptide separation prediction)" help="(-in_negative) "/>
    <param name="param_svm_type" display="radio" type="select" optional="False" value="NU_SVR" label="the type of the svm (NU_SVR or EPSILON_SVR for RT prediction, automatically set &lt;br&gt;to C_SVC for separation prediction)" help="(-svm_type) ">
      <option value="NU_SVR" selected="true">NU_SVR</option>
      <option value="NU_SVC">NU_SVC</option>
      <option value="EPSILON_SVR">EPSILON_SVR</option>
      <option value="C_SVC">C_SVC</option>
    </param>
    <param name="param_nu" type="float" min="0.0" max="1.0" optional="True" value="0.5" label="the nu parameter [0..1] of the svm (for nu-SVR)" help="(-nu) "/>
    <param name="param_p" type="float" value="0.1" label="the epsilon parameter of the svm (for epsilon-SVR)" help="(-p) "/>
    <param name="param_c" type="float" value="1.0" label="the penalty parameter of the svm" help="(-c) "/>
    <param name="param_kernel_type" display="radio" type="select" optional="False" value="OLIGO" label="the kernel type of the svm" help="(-kernel_type) ">
      <option value="LINEAR">LINEAR</option>
      <option value="RBF">RBF</option>
      <option value="POLY">POLY</option>
      <option value="OLIGO" selected="true">OLIGO</option>
    </param>
    <param name="param_degree" type="integer" min="1" optional="True" value="1" label="the degree parameter of the kernel function of the svm (POLY kernel)" help="(-degree) "/>
    <param name="param_border_length" type="integer" min="1" optional="True" value="22" label="length of the POBK" help="(-border_length) "/>
    <param name="param_max_std" type="float" min="0.0" optional="True" value="10.0" label="max standard deviation for a peptide to be included (if there are several ones for one peptide string)(median is taken)" help="(-max_std) "/>
    <param name="param_k_mer_length" type="integer" min="1" optional="True" value="1" label="k_mer length of the POBK" help="(-k_mer_length) "/>
    <param name="param_sigma" type="float" value="5.0" label="sigma of the POBK" help="(-sigma) "/>
    <param name="param_total_gradient_time" type="float" min="1e-05" optional="True" value="1.0" label="the time (in seconds) of the gradient (only for RT prediction)" help="(-total_gradient_time) "/>
    <param name="param_first_dim_rt" display="radio" type="boolean" truevalue="-first_dim_rt" falsevalue="" checked="false" optional="True" label="if set the model will be built for first_dim_rt" help="(-first_dim_rt) "/>
    <param name="param_additive_cv" display="radio" type="boolean" truevalue="-additive_cv" falsevalue="" checked="false" optional="True" label="if the step sizes should be interpreted additively (otherwise the actual value is multiplied &lt;br&gt;with the step size to get the new value" help="(-additive_cv) "/>
    <param name="param_cv_skip_cv" display="radio" type="boolean" truevalue="-cv:skip_cv" falsevalue="" checked="false" optional="True" label="Set to enable Cross-Validation or set to true if the model should just be trained with 1 set of specified parameters" help="(-skip_cv) "/>
    <param name="param_cv_number_of_runs" type="integer" min="1" optional="True" value="1" label="number of runs for the CV (each run creates a new random partition of the data)" help="(-number_of_runs) "/>
    <param name="param_cv_number_of_partitions" type="integer" min="2" optional="True" value="10" label="number of CV partitions" help="(-number_of_partitions) "/>
    <param name="param_cv_degree_start" type="integer" min="1" optional="True" value="1" label="starting point of degree" help="(-degree_start) "/>
    <param name="param_cv_degree_step_size" type="integer" value="2" label="step size point of degree" help="(-degree_step_size) "/>
    <param name="param_cv_degree_stop" type="integer" value="4" label="stopping point of degree" help="(-degree_stop) "/>
    <param name="param_cv_p_start" type="float" value="1.0" label="starting point of p" help="(-p_start) "/>
    <param name="param_cv_p_step_size" type="float" value="10.0" label="step size point of p" help="(-p_step_size) "/>
    <param name="param_cv_p_stop" type="float" value="1000.0" label="stopping point of p" help="(-p_stop) "/>
    <param name="param_cv_c_start" type="float" value="1.0" label="starting point of c" help="(-c_start) "/>
    <param name="param_cv_c_step_size" type="float" value="10.0" label="step size of c" help="(-c_step_size) "/>
    <param name="param_cv_c_stop" type="float" value="1000.0" label="stopping point of c" help="(-c_stop) "/>
    <param name="param_cv_nu_start" type="float" min="0.0" max="1.0" optional="True" value="0.3" label="starting point of nu" help="(-nu_start) "/>
    <param name="param_cv_nu_step_size" type="float" value="1.2" label="step size of nu" help="(-nu_step_size) "/>
    <param name="param_cv_nu_stop" type="float" min="0.0" max="1.0" optional="True" value="0.7" label="stopping point of nu" help="(-nu_stop) "/>
    <param name="param_cv_sigma_start" type="float" value="1.0" label="starting point of sigma" help="(-sigma_start) "/>
    <param name="param_cv_sigma_step_size" type="float" value="1.3" label="step size of sigma" help="(-sigma_step_size) "/>
    <param name="param_cv_sigma_stop" type="float" value="15.0" label="stopping point of sigma" help="(-sigma_stop) "/>
    <expand macro="advanced_options">
      <param name="param_force" display="radio" type="boolean" truevalue="-force" falsevalue="" checked="false" optional="True" label="Overwrite tool specific checks" help="(-force) "/>
    </expand>
  </inputs>
  <outputs>
    <data name="param_out" format="txt"/>
    <data name="param_out_oligo_params" format="paramXML"/>
    <data name="param_out_oligo_trainset" format="txt"/>
  </outputs>
  <help>Trains a model for the retention time prediction of peptides from a training set.


For more information, visit https://abibuilder.informatik.uni-tuebingen.de/archive/openms/Documentation/release/2.3.0/html/TOPP_RTModel.html</help>
</tool>