Mercurial > repos > galaxyp > quantp
comparison quantp.r @ 2:ed0bb50d7ffe draft
planemo upload commit bd6bc95760db6832c77d4d2872281772c31f9039
author | galaxyp |
---|---|
date | Wed, 09 Jan 2019 16:59:24 -0500 |
parents | bcc7a4c4cc29 |
children |
comparison
equal
deleted
inserted
replaced
1:bcc7a4c4cc29 | 2:ed0bb50d7ffe |
---|---|
58 par(mfrow=c(1,1)); | 58 par(mfrow=c(1,1)); |
59 plot(regmodel, 1, cex.lab=1.5); | 59 plot(regmodel, 1, cex.lab=1.5); |
60 dev.off(); | 60 dev.off(); |
61 | 61 |
62 suppressWarnings(g <- autoplot(regmodel, label = FALSE)[[1]] + | 62 suppressWarnings(g <- autoplot(regmodel, label = FALSE)[[1]] + |
63 geom_point(aes(text=sprintf("Residual: %.2f<br>Fitted value: %.2f<br>Gene: %s", .fitted, .resid, PE_TE_data$PE_ID)), | 63 geom_point(aes(text=sprintf("Residual: %.2f<br>Fitted value: %.2f<br>Gene: %s", .fitted, .resid, PE_TE_data$PE_ID)), |
64 shape = 1, size = .1, stroke = .2) + | 64 shape = 1, size = .1, stroke = .2) + |
65 theme_light()) | 65 theme_light()) |
66 saveWidget(ggplotly(g, tooltip= c("text")), file.path(gsub("\\.png", "\\.html", outplot))) | 66 saveWidget(ggplotly(g, tooltip= c("text")), file.path(gsub("\\.png", "\\.html", outplot))) |
67 | 67 |
68 outplot = paste(outdir,"/PE_TE_lm_2.png",sep="",collapse=""); | 68 outplot = paste(outdir,"/PE_TE_lm_2.png",sep="",collapse=""); |
69 png(outplot,width = 10, height = 10, units = 'in', res=300); | 69 png(outplot,width = 10, height = 10, units = 'in', res=300); |
70 # bitmap(outplot, "png16m"); | 70 # bitmap(outplot, "png16m"); |
72 g <- plot(regmodel, 2, cex.lab=1.5); | 72 g <- plot(regmodel, 2, cex.lab=1.5); |
73 ggplotly(g) | 73 ggplotly(g) |
74 dev.off(); | 74 dev.off(); |
75 | 75 |
76 suppressWarnings(g <- autoplot(regmodel, label = FALSE)[[2]] + | 76 suppressWarnings(g <- autoplot(regmodel, label = FALSE)[[2]] + |
77 geom_point(aes(text=sprintf("Standarized residual: %.2f<br>Theoretical quantile: %.2f<br>Gene: %s", .qqx, .qqy, PE_TE_data$PE_ID)), | 77 geom_point(aes(text=sprintf("Standarized residual: %.2f<br>Theoretical quantile: %.2f<br>Gene: %s", .qqx, .qqy, PE_TE_data$PE_ID)), |
78 shape = 1, size = .1) + | 78 shape = 1, size = .1) + |
79 theme_light()) | 79 theme_light()) |
80 saveWidget(ggplotly(g, tooltip = "text"), file.path(gsub("\\.png", "\\.html", outplot))) | 80 saveWidget(ggplotly(g, tooltip = "text"), file.path(gsub("\\.png", "\\.html", outplot))) |
81 | 81 |
82 | 82 |
83 outplot = paste(outdir,"/PE_TE_lm_5.png",sep="",collapse=""); | 83 outplot = paste(outdir,"/PE_TE_lm_5.png",sep="",collapse=""); |
84 png(outplot, width = 10, height = 10, units = 'in',res=300); | 84 png(outplot, width = 10, height = 10, units = 'in',res=300); |
89 | 89 |
90 cd_cont_pos <- function(leverage, level, model) {sqrt(level*length(coef(model))*(1-leverage)/leverage)} | 90 cd_cont_pos <- function(leverage, level, model) {sqrt(level*length(coef(model))*(1-leverage)/leverage)} |
91 cd_cont_neg <- function(leverage, level, model) {-cd_cont_pos(leverage, level, model)} | 91 cd_cont_neg <- function(leverage, level, model) {-cd_cont_pos(leverage, level, model)} |
92 | 92 |
93 suppressWarnings(g <- autoplot(regmodel, label = FALSE)[[4]] + | 93 suppressWarnings(g <- autoplot(regmodel, label = FALSE)[[4]] + |
94 aes(label = PE_TE_data$PE_ID) + | 94 aes(label = PE_TE_data$PE_ID) + |
95 geom_point(aes(text=sprintf("Leverage: %.2f<br>Standardized residual: %.2f<br>Gene: %s", .hat, .stdresid, PE_TE_data$PE_ID))) + | 95 geom_point(aes(text=sprintf("Leverage: %.2f<br>Standardized residual: %.2f<br>Gene: %s", .hat, .stdresid, PE_TE_data$PE_ID))) + |
96 theme_light()) | 96 theme_light()) |
97 saveWidget(ggplotly(g, tooltip = "text"), file.path(gsub("\\.png", "\\.html", outplot))) | 97 saveWidget(ggplotly(g, tooltip = "text"), file.path(gsub("\\.png", "\\.html", outplot))) |
98 | 98 |
99 cat('<table border=1 cellspacing=0 cellpadding=5 style="table-layout:auto; ">', file = htmloutfile, append = TRUE); | 99 cat('<table border=1 cellspacing=0 cellpadding=5 style="table-layout:auto; ">', file = htmloutfile, append = TRUE); |
100 | 100 |
101 cat( | 101 cat( |
213 cooksd_df$colors <- "black" | 213 cooksd_df$colors <- "black" |
214 cutoff <- as.numeric(cookdist_upper_cutoff)*mean(cooksd, na.rm=T) | 214 cutoff <- as.numeric(cookdist_upper_cutoff)*mean(cooksd, na.rm=T) |
215 cooksd_df[cooksd_df$cooksd > cutoff,]$colors <- "red" | 215 cooksd_df[cooksd_df$cooksd > cutoff,]$colors <- "red" |
216 | 216 |
217 g <- ggplot(cooksd_df, aes(x = index, y = cooksd, label = row.names(cooksd_df), color=as.factor(colors), | 217 g <- ggplot(cooksd_df, aes(x = index, y = cooksd, label = row.names(cooksd_df), color=as.factor(colors), |
218 text=sprintf("Gene: %s<br>Cook's Distance: %.3f", row.names(cooksd_df), cooksd))) + | 218 text=sprintf("Gene: %s<br>Cook's Distance: %.3f", row.names(cooksd_df), cooksd))) + |
219 ggtitle("Influential Obs. by Cook's distance") + xlab("Observations") + ylab("Cook's Distance") + | 219 ggtitle("Influential Obs. by Cook's distance") + xlab("Observations") + ylab("Cook's Distance") + |
220 #xlim(0, 3000) + ylim(0, .15) + | 220 #xlim(0, 3000) + ylim(0, .15) + |
221 scale_shape_discrete(solid=F) + | 221 scale_shape_discrete(solid=F) + |
222 geom_point(size = 2, shape = 8) + | 222 geom_point(size = 2, shape = 8) + |
223 geom_hline(yintercept = cutoff, | 223 geom_hline(yintercept = cutoff, |
273 min_lim = min(c(PE_TE_data$PE_abundance,PE_TE_data$TE_abundance)); | 273 min_lim = min(c(PE_TE_data$PE_abundance,PE_TE_data$TE_abundance)); |
274 max_lim = max(c(PE_TE_data$PE_abundance,PE_TE_data$TE_abundance)); | 274 max_lim = max(c(PE_TE_data$PE_abundance,PE_TE_data$TE_abundance)); |
275 png(outplot, width = 10, height = 10, units = 'in', res=300); | 275 png(outplot, width = 10, height = 10, units = 'in', res=300); |
276 # bitmap(outplot,"png16m"); | 276 # bitmap(outplot,"png16m"); |
277 suppressWarnings(g <- ggplot(PE_TE_data_no_outlier, aes(x=TE_abundance, y=PE_abundance, label=PE_ID)) + geom_smooth() + | 277 suppressWarnings(g <- ggplot(PE_TE_data_no_outlier, aes(x=TE_abundance, y=PE_abundance, label=PE_ID)) + geom_smooth() + |
278 xlab("Transcript abundance log fold-change") + ylab("Protein abundance log fold-change") + | 278 xlab("Transcript abundance log fold-change") + ylab("Protein abundance log fold-change") + |
279 xlim(min_lim,max_lim) + ylim(min_lim,max_lim) + | 279 xlim(min_lim,max_lim) + ylim(min_lim,max_lim) + |
280 geom_point(aes(text=sprintf("Gene: %s<br>Transcript Abundance (log fold-change): %.3f<br>Protein Abundance (log fold-change): %.3f", | 280 geom_point(aes(text=sprintf("Gene: %s<br>Transcript Abundance (log fold-change): %.3f<br>Protein Abundance (log fold-change): %.3f", |
281 PE_ID, TE_abundance, PE_abundance)))) | 281 PE_ID, TE_abundance, PE_abundance)))) |
282 suppressMessages(plot(g)) | 282 suppressMessages(plot(g)) |
283 suppressMessages(saveWidget(ggplotly(g, tooltip="text"), file.path(gsub("\\.png", "\\.html", outplot)))) | 283 suppressMessages(saveWidget(ggplotly(g, tooltip="text"), file.path(gsub("\\.png", "\\.html", outplot)))) |
284 dev.off(); | 284 dev.off(); |
285 | 285 |
286 | 286 |
438 points(PE_TE_data_kdata[ind,"TE_abundance"], PE_TE_data_kdata[ind,"PE_abundance"], col="orange", pch=16); | 438 points(PE_TE_data_kdata[ind,"TE_abundance"], PE_TE_data_kdata[ind,"PE_abundance"], col="orange", pch=16); |
439 dev.off(); | 439 dev.off(); |
440 | 440 |
441 # Interactive plot for k-means clustering | 441 # Interactive plot for k-means clustering |
442 g <- ggplot(PE_TE_data, aes(x = TE_abundance, y = PE_abundance, label = row.names(PE_TE_data), | 442 g <- ggplot(PE_TE_data, aes(x = TE_abundance, y = PE_abundance, label = row.names(PE_TE_data), |
443 text=sprintf("Gene: %s<br>Transcript Abundance: %.3f<br>Protein Abundance: %.3f", | 443 text=sprintf("Gene: %s<br>Transcript Abundance: %.3f<br>Protein Abundance: %.3f", |
444 PE_ID, TE_abundance, PE_abundance), | 444 PE_ID, TE_abundance, PE_abundance), |
445 color=as.factor(k1$cluster))) + | 445 color=as.factor(k1$cluster))) + |
446 xlab("Transcript Abundance") + ylab("Protein Abundance") + | 446 xlab("Transcript Abundance") + ylab("Protein Abundance") + |
447 scale_shape_discrete(solid=F) + geom_smooth(method = "loess", span = 2/3) + | 447 scale_shape_discrete(solid=F) + geom_smooth(method = "loess", span = 2/3) + |
448 geom_point(size = 1, shape = 8) + | 448 geom_point(size = 1, shape = 8) + |
449 theme_light() + theme(legend.position="none") | 449 theme_light() + theme(legend.position="none") |
450 saveWidget(ggplotly(g, tooltip=c("text")), file.path(gsub("\\.png", "\\.html", outplot))) | 450 saveWidget(ggplotly(g, tooltip=c("text")), file.path(gsub("\\.png", "\\.html", outplot))) |
473 min_lim = min(c(PE_TE_data$PE_abundance,PE_TE_data$TE_abundance)); | 473 min_lim = min(c(PE_TE_data$PE_abundance,PE_TE_data$TE_abundance)); |
474 max_lim = max(c(PE_TE_data$PE_abundance,PE_TE_data$TE_abundance)); | 474 max_lim = max(c(PE_TE_data$PE_abundance,PE_TE_data$TE_abundance)); |
475 png(outfile, width = 10, height = 10, units = 'in', res=300); | 475 png(outfile, width = 10, height = 10, units = 'in', res=300); |
476 # bitmap(outfile, "png16m"); | 476 # bitmap(outfile, "png16m"); |
477 suppressWarnings(g <- ggplot(PE_TE_data, aes(x=TE_abundance, y=PE_abundance, label=PE_ID)) + geom_smooth() + | 477 suppressWarnings(g <- ggplot(PE_TE_data, aes(x=TE_abundance, y=PE_abundance, label=PE_ID)) + geom_smooth() + |
478 xlab("Transcript abundance log fold-change") + ylab("Protein abundance log fold-change") + | 478 xlab("Transcript abundance log fold-change") + ylab("Protein abundance log fold-change") + |
479 xlim(min_lim,max_lim) + ylim(min_lim,max_lim) + | 479 xlim(min_lim,max_lim) + ylim(min_lim,max_lim) + |
480 geom_point(aes(text=sprintf("Gene: %s<br>Transcript Abundance (log fold-change): %.3f<br>Protein Abundance (log fold-change): %.3f", | 480 geom_point(aes(text=sprintf("Gene: %s<br>Transcript Abundance (log fold-change): %.3f<br>Protein Abundance (log fold-change): %.3f", |
481 PE_ID, TE_abundance, PE_abundance)), | 481 PE_ID, TE_abundance, PE_abundance)), |
482 size = .5)) | 482 size = .5)) |
483 suppressMessages(plot(g)) | 483 suppressMessages(plot(g)) |
484 suppressMessages(saveWidget(ggplotly(g, tooltip = "text"), file.path(gsub("\\.png", "\\.html", outfile)))) | 484 suppressMessages(saveWidget(ggplotly(g, tooltip = "text"), file.path(gsub("\\.png", "\\.html", outfile)))) |
485 dev.off(); | 485 dev.off(); |
486 } | 486 } |
487 | 487 |
680 abline(v = log(2,base=2), col="red", lty=2) | 680 abline(v = log(2,base=2), col="red", lty=2) |
681 abline(v = log(0.5,base=2), col="red", lty=2) | 681 abline(v = log(0.5,base=2), col="red", lty=2) |
682 dev.off(); | 682 dev.off(); |
683 | 683 |
684 g <- ggplot(PE_df_logfold, aes(x = LogFold, -log10(PE_pval), color = as.factor(color), | 684 g <- ggplot(PE_df_logfold, aes(x = LogFold, -log10(PE_pval), color = as.factor(color), |
685 text=sprintf("Gene: %s<br>Log2 Fold-Change: %.3f<br>-log10 p-value: %.3f<br>p-value: %.3f", | 685 text=sprintf("Gene: %s<br>Log2 Fold-Change: %.3f<br>-log10 p-value: %.3f<br>p-value: %.3f", |
686 Genes, LogFold, -log10(PE_pval), PE_pval))) + | 686 Genes, LogFold, -log10(PE_pval), PE_pval))) + |
687 xlab("log2 fold change") + ylab("-log10 p-value") + | 687 xlab("log2 fold change") + ylab("-log10 p-value") + |
688 geom_point(shape=1, size = 1.5, stroke = .2) + | 688 geom_point(shape=1, size = 1.5, stroke = .2) + |
689 scale_color_manual(values = c("black" = "black", "red" = "red", "blue" = "blue")) + | 689 scale_color_manual(values = c("black" = "black", "red" = "red", "blue" = "blue")) + |
690 geom_hline(yintercept = -log(0.05,base=10), linetype="dashed", color="red") + | 690 geom_hline(yintercept = -log(0.05,base=10), linetype="dashed", color="red") + |
691 geom_vline(xintercept = log(2,base=2), linetype="dashed", color="red") + | 691 geom_vline(xintercept = log(2,base=2), linetype="dashed", color="red") + |
720 abline(v = log(2,base=2), col="red", lty=2) | 720 abline(v = log(2,base=2), col="red", lty=2) |
721 abline(v = log(0.5,base=2), col="red", lty=2) | 721 abline(v = log(0.5,base=2), col="red", lty=2) |
722 dev.off(); | 722 dev.off(); |
723 | 723 |
724 g <- ggplot(TE_df_logfold, aes(x = LogFold, -log10(TE_pval), color = as.factor(color), | 724 g <- ggplot(TE_df_logfold, aes(x = LogFold, -log10(TE_pval), color = as.factor(color), |
725 text=sprintf("Gene: %s<br>Log2 Fold-Change: %.3f<br>-log10 p-value: %.3f<br>p-value: %.3f", | 725 text=sprintf("Gene: %s<br>Log2 Fold-Change: %.3f<br>-log10 p-value: %.3f<br>p-value: %.3f", |
726 Genes, LogFold, -log10(TE_pval), TE_pval))) + | 726 Genes, LogFold, -log10(TE_pval), TE_pval))) + |
727 xlab("log2 fold change") + ylab("-log10 p-value") + | 727 xlab("log2 fold change") + ylab("-log10 p-value") + |
728 geom_point(shape=1, size = 1.5, stroke = .2) + | 728 geom_point(shape=1, size = 1.5, stroke = .2) + |
729 scale_color_manual(values = c("black" = "black", "red" = "red", "blue" = "blue")) + | 729 scale_color_manual(values = c("black" = "black", "red" = "red", "blue" = "blue")) + |
730 geom_hline(yintercept = -log(0.05,base=10), linetype="dashed", color="red") + | 730 geom_hline(yintercept = -log(0.05,base=10), linetype="dashed", color="red") + |
972 cat('<h2 id="sample_dist"><font color=#ff0000>SAMPLE DISTRIBUTION</font></h2>\n', | 972 cat('<h2 id="sample_dist"><font color=#ff0000>SAMPLE DISTRIBUTION</font></h2>\n', |
973 file = htmloutfile, append = TRUE); | 973 file = htmloutfile, append = TRUE); |
974 | 974 |
975 # TE Boxplot | 975 # TE Boxplot |
976 outplot = paste(outdir,"/Box_TE.png",sep="",collape=""); | 976 outplot = paste(outdir,"/Box_TE.png",sep="",collape=""); |
977 multisample_boxplot(TE_df, sampleinfo_df, outplot, "Yes", "Samples", "Transcript Abundance data"); | |
978 lines <- extractWidgetCode(outplot) | |
979 prescripts <- c(prescripts, lines$prescripts) | |
980 postscripts <- c(postscripts, lines$postscripts) | |
977 cat('<table border=1 cellspacing=0 cellpadding=5 style="table-layout:auto; ">\n', | 981 cat('<table border=1 cellspacing=0 cellpadding=5 style="table-layout:auto; ">\n', |
978 '<tr bgcolor="#7a0019"><th><font color=#ffcc33>Boxplot: Transcriptome data</font></th><th><font color=#ffcc33>Boxplot: Proteome data</font></th></tr>\n', | 982 '<tr bgcolor="#7a0019"><th><font color=#ffcc33>Boxplot: Transcriptome data</font></th><th><font color=#ffcc33>Boxplot: Proteome data</font></th></tr>\n', |
979 "<tr><td align=center>", '<img src="Box_TE.png" width=500 height=500></td>\n', file = htmloutfile, append = TRUE); | 983 "<tr><td align=center>", '<img src="Box_TE.png" width=500 height=500>', lines$widget_div, '</td>\n', file = htmloutfile, append = TRUE); |
980 multisample_boxplot(TE_df, sampleinfo_df, outplot, "Yes", "Samples", "Transcript Abundance data"); | |
981 | 984 |
982 # PE Boxplot | 985 # PE Boxplot |
983 outplot = paste(outdir,"/Box_PE.png",sep="",collape=""); | 986 outplot = paste(outdir,"/Box_PE.png",sep="",collape=""); |
984 cat("<td align=center>", '<img src="Box_PE.png" width=500 height=500></td></tr></table>\n', file = htmloutfile, append = TRUE); | |
985 multisample_boxplot(PE_df, sampleinfo_df, outplot, "Yes", "Samples", "Protein Abundance data"); | 987 multisample_boxplot(PE_df, sampleinfo_df, outplot, "Yes", "Samples", "Protein Abundance data"); |
986 | 988 lines <- extractWidgetCode(outplot) |
989 postscripts <- c(postscripts, lines$postscripts) | |
990 cat("<td align=center>", '<img src="Box_PE.png" width=500 height=500>', lines$widget_div, | |
991 '</td></tr></table>\n', file = htmloutfile, append = TRUE); | |
987 cat('<hr/><h2 id="corr_data"><font color=#ff0000>CORRELATION</font></h2>\n', | 992 cat('<hr/><h2 id="corr_data"><font color=#ff0000>CORRELATION</font></h2>\n', |
988 file = htmloutfile, append = TRUE); | 993 file = htmloutfile, append = TRUE); |
989 | 994 |
990 # TE PE scatter | 995 # TE PE scatter |
996 PE_TE_data = data.frame(PE_df, TE_df); | |
997 colnames(PE_TE_data) = c("PE_ID","PE_abundance","TE_ID","TE_abundance"); | |
991 outplot = paste(outdir,"/TE_PE_scatter.png",sep="",collape=""); | 998 outplot = paste(outdir,"/TE_PE_scatter.png",sep="",collape=""); |
992 cat('<table border=1 cellspacing=0 cellpadding=5 style="table-layout:auto; "> <tr bgcolor="#7a0019"><th><font color=#ffcc33>Scatter plot between Proteome and Transcriptome Abundance</font></th></tr>\n', file = htmloutfile, append = TRUE); | 999 cat('<table border=1 cellspacing=0 cellpadding=5 style="table-layout:auto; "> <tr bgcolor="#7a0019"><th><font color=#ffcc33>Scatter plot between Proteome and Transcriptome Abundance</font></th></tr>\n', file = htmloutfile, append = TRUE); |
993 singlesample_scatter(PE_TE_data, outplot); | 1000 singlesample_scatter(PE_TE_data, outplot); |
994 lines <- extractWidgetCode(outplot); | 1001 lines <- extractWidgetCode(outplot); |
995 postscripts <- c(postscripts, lines$postscripts); | 1002 postscripts <- c(postscripts, lines$postscripts); |
996 cat("<tr><td align=center>", '<img src="TE_PE_scatter.png" width=800 height=800>', lines$widget_div, '</td></tr>\n', file = htmloutfile, append = TRUE); | 1003 cat("<tr><td align=center>", '<img src="TE_PE_scatter.png" width=800 height=800>', gsub('width:500px;height:500px', 'width:800px;height:800px' , lines$widget_div), '</td></tr>\n', file = htmloutfile, append = TRUE); |
997 PE_TE_data = data.frame(PE_df, TE_df); | |
998 colnames(PE_TE_data) = c("PE_ID","PE_abundance","TE_ID","TE_abundance"); | |
999 | 1004 |
1000 # TE PE Cor | 1005 # TE PE Cor |
1001 cat("<tr><td align=center>", file = htmloutfile, append = TRUE); | 1006 cat("<tr><td align=center>", file = htmloutfile, append = TRUE); |
1002 singlesample_cor(PE_TE_data, htmloutfile, append=TRUE); | 1007 singlesample_cor(PE_TE_data, htmloutfile, append=TRUE); |
1003 cat('<font color="red">*Note that <u>correlation</u> is <u>sensitive to outliers</u> in the data. So it is important to analyze outliers/influential observations in the data.<br> Below we use <u>Cook\'s distance based approach</u> to identify such influential observations.</font>\n', | 1008 cat('<font color="red">*Note that <u>correlation</u> is <u>sensitive to outliers</u> in the data. So it is important to analyze outliers/influential observations in the data.<br> Below we use <u>Cook\'s distance based approach</u> to identify such influential observations.</font>\n', |
1012 singlesample_regression(PE_TE_data,htmloutfile, append=TRUE); | 1017 singlesample_regression(PE_TE_data,htmloutfile, append=TRUE); |
1013 postscripts <- c(postscripts, c(extractWidgetCode(paste(outdir,"/PE_TE_lm_1.png",sep="",collapse=""))$postscripts, | 1018 postscripts <- c(postscripts, c(extractWidgetCode(paste(outdir,"/PE_TE_lm_1.png",sep="",collapse=""))$postscripts, |
1014 extractWidgetCode(paste(outdir,"/PE_TE_lm_2.png",sep="",collapse=""))$postscripts, | 1019 extractWidgetCode(paste(outdir,"/PE_TE_lm_2.png",sep="",collapse=""))$postscripts, |
1015 extractWidgetCode(paste(outdir,"/PE_TE_lm_5.png",sep="",collapse=""))$postscripts, | 1020 extractWidgetCode(paste(outdir,"/PE_TE_lm_5.png",sep="",collapse=""))$postscripts, |
1016 extractWidgetCode(paste(outdir,"/PE_TE_lm_cooksd.png",sep="",collapse=""))$postscripts, | 1021 extractWidgetCode(paste(outdir,"/PE_TE_lm_cooksd.png",sep="",collapse=""))$postscripts, |
1017 extractWidgetCode(paste(outdir,"/AbundancePlot_scatter_without_outliers.png",sep="",collapse=""))$postscripts)); | 1022 extractWidgetCode(paste(outdir,"/AbundancePlot_scatter_without_outliers.png",sep="",collapse=""))$postscripts, |
1023 gsub('data-for="html', 'data-for="secondhtml"', | |
1024 extractWidgetCode(paste(outdir,"/TE_PE_scatter.png",sep="",collapse=""))$postscripts))) | |
1018 | 1025 |
1019 cat('<hr/><h2 id="cluster_data"><font color=#ff0000>CLUSTER ANALYSIS</font></h2>\n', | 1026 cat('<hr/><h2 id="cluster_data"><font color=#ff0000>CLUSTER ANALYSIS</font></h2>\n', |
1020 file = htmloutfile, append = TRUE); | 1027 file = htmloutfile, append = TRUE); |
1021 | 1028 |
1022 # TE PE Heatmap | 1029 # TE PE Heatmap |