Mercurial > repos > galaxyp > qupath_roi_splitter
view qupath_roi_splitter.py @ 2:7bee859bbd11 draft
planemo upload for repository hhttps://github.com/npinter/ROIsplitter commit 7391296e0c7c8d48b42a129d154b50b29fd41737
author | galaxyp |
---|---|
date | Thu, 11 Apr 2024 07:52:58 +0000 |
parents | 064b53fd3131 |
children | 24ccdcfbabac |
line wrap: on
line source
import argparse import cv2 import geojson import numpy as np import pandas as pd def draw_poly(input_df, input_img, col=(0, 0, 0), fill=False): s = np.array(input_df) if fill: output_img = cv2.fillPoly(input_img, pts=np.int32([s]), color=col) else: output_img = cv2.polylines(input_img, np.int32([s]), True, color=col, thickness=1) return output_img def draw_roi(input_roi, input_img, fill): if len(input_roi["geometry"]["coordinates"]) == 1: # Polygon w/o holes input_img = draw_poly(input_roi["geometry"]["coordinates"][0], input_img, fill=fill) else: first_roi = True for sub_roi in input_roi["geometry"]["coordinates"]: # Polygon with holes if not isinstance(sub_roi[0][0], list): if first_roi: input_img = draw_poly(sub_roi, input_img, fill=fill) first_roi = False else: # holes in ROI input_img = draw_poly(sub_roi, input_img, col=(255, 255, 255), fill=fill) else: # MultiPolygon with holes for sub_coord in sub_roi: if first_roi: input_img = draw_poly(sub_coord, input_img, fill=fill) first_roi = False else: # holes in ROI input_img = draw_poly(sub_coord, input_img, col=(255, 255, 255), fill=fill) return input_img def split_qupath_roi(in_roi): with open(in_roi) as file: qupath_roi = geojson.load(file) # HE dimensions dim_plt = [qupath_roi["dim"]["width"], qupath_roi["dim"]["height"]] tma_name = qupath_roi["name"] cell_types = [ct.rsplit(" - ", 1)[-1] for ct in qupath_roi["featureNames"]] for cell_type in cell_types: # create numpy array with white background img = np.zeros((dim_plt[1], dim_plt[0], 3), dtype="uint8") img.fill(255) for i, roi in enumerate(qupath_roi["features"]): if not args.all: if "classification" not in roi["properties"]: continue if roi["properties"]["classification"]["name"] == cell_type: img = draw_roi(roi, img, args.fill) else: img = draw_roi(roi, img, args.fill) # get all black pixel coords_arr = np.column_stack(np.where(img == (0, 0, 0))) # remove duplicated rows coords_arr_xy = coords_arr[coords_arr[:, 2] == 0] # remove last column coords_arr_xy = np.delete(coords_arr_xy, 2, axis=1) # to pandas and rename columns to x and y coords_df = pd.DataFrame(coords_arr_xy, columns=['y', 'x']) # reorder columns coords_df = coords_df[['x', 'y']] # drop duplicates coords_df = coords_df.drop_duplicates( subset=['x', 'y'], keep='last').reset_index(drop=True) coords_df.to_csv("{}_{}.txt".format(tma_name, cell_type), sep='\t', index=False) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Split ROI coordinates of QuPath TMA annotation by cell type (classfication)") parser.add_argument("--qupath_roi", default=False, help="Input QuPath annotation (GeoJSON file)") parser.add_argument("--fill", action="store_true", required=False, help="Fill pixels in ROIs") parser.add_argument('--version', action='version', version='%(prog)s 0.1.0') parser.add_argument("--all", action="store_true", required=False, help="Extracts all ROIs") args = parser.parse_args() if args.qupath_roi: split_qupath_roi(args.qupath_roi)