Mercurial > repos > galaxyp > qupath_roi_splitter
changeset 4:9f136ebf73ac draft
planemo upload for repository hhttps://github.com/npinter/ROIsplitter commit 918ae25f84e7042ed36461219ff068633c1c2427
author | galaxyp |
---|---|
date | Fri, 19 Jul 2024 14:33:40 +0000 |
parents | 24ccdcfbabac |
children | 17c54a716a5b |
files | qupath_roi_splitter.py qupath_roi_splitter.xml |
diffstat | 2 files changed, 69 insertions(+), 66 deletions(-) [+] |
line wrap: on
line diff
--- a/qupath_roi_splitter.py Thu Apr 25 15:13:22 2024 +0000 +++ b/qupath_roi_splitter.py Fri Jul 19 14:33:40 2024 +0000 @@ -6,43 +6,32 @@ import pandas as pd -def draw_poly(input_df, input_img, col=(0, 0, 0), fill=False): - s = np.array(input_df) - if fill: - output_img = cv2.fillPoly(input_img, pts=np.int32([s]), color=col) - else: - output_img = cv2.polylines(input_img, np.int32([s]), True, color=col, thickness=1) - return output_img +def collect_coords(input_coords, feature_index, coord_index=0): + coords_with_index = [] + for coord in input_coords: + coords_with_index.append((coord[0], coord[1], feature_index, coord_index)) + coord_index += 1 + return coords_with_index -def draw_roi(input_roi, input_img, fill): +def collect_roi_coords(input_roi, feature_index): + all_coords = [] if len(input_roi["geometry"]["coordinates"]) == 1: # Polygon w/o holes - input_img = draw_poly(input_roi["geometry"]["coordinates"][0], input_img, fill=fill) + all_coords.extend(collect_coords(input_roi["geometry"]["coordinates"][0], feature_index)) else: - first_roi = True + coord_index = 0 for sub_roi in input_roi["geometry"]["coordinates"]: - # Polygon with holes + # Polygon with holes or MultiPolygon if not isinstance(sub_roi[0][0], list): - if first_roi: - first_roi = False - col = (0, 0, 0) - else: - # holes in ROI - col = (255, 255, 255) if not fill else (0, 0, 0) - input_img = draw_poly(sub_roi, input_img, col=col, fill=fill) + all_coords.extend(collect_coords(sub_roi, feature_index, coord_index)) + coord_index += len(sub_roi) else: # MultiPolygon with holes for sub_coord in sub_roi: - if first_roi: - first_roi = False - col = (0, 0, 0) - else: - # holes in ROI - col = (255, 255, 255) if not fill else (0, 0, 0) - input_img = draw_poly(sub_coord, input_img, col=col, fill=fill) - - return input_img + all_coords.extend(collect_coords(sub_coord, feature_index, coord_index)) + coord_index += len(sub_coord) + return all_coords def split_qupath_roi(in_roi): @@ -50,57 +39,71 @@ qupath_roi = geojson.load(file) # HE dimensions - dim_plt = [qupath_roi["dim"]["width"], qupath_roi["dim"]["height"]] + dim_plt = [int(qupath_roi["dim"]["width"]), int(qupath_roi["dim"]["height"])] tma_name = qupath_roi["name"] cell_types = [ct.rsplit(" - ", 1)[-1] for ct in qupath_roi["featureNames"]] - for cell_type in cell_types: - # create numpy array with white background - img = np.zeros((dim_plt[1], dim_plt[0], 3), dtype="uint8") - img.fill(255) + coords_by_cell_type = {ct: [] for ct in cell_types} + coords_by_cell_type['all'] = [] # For storing all coordinates if args.all is True + + for feature_index, roi in enumerate(qupath_roi["features"]): + feature_coords = collect_roi_coords(roi, feature_index) - for i, roi in enumerate(qupath_roi["features"]): - if not args.all: - if "classification" not in roi["properties"]: - continue - if roi["properties"]["classification"]["name"] == cell_type: - img = draw_roi(roi, img, args.fill) - else: - img = draw_roi(roi, img, args.fill) + if args.all: + coords_by_cell_type['all'].extend(feature_coords) + elif "classification" in roi["properties"]: + cell_type = roi["properties"]["classification"]["name"] + if cell_type in cell_types: + coords_by_cell_type[cell_type].extend(feature_coords) - # get all black pixel - coords_arr = np.column_stack(np.where(img == (0, 0, 0))) + for cell_type, coords in coords_by_cell_type.items(): + if coords: + # Generate image (white background) + img = np.ones((dim_plt[1], dim_plt[0]), dtype="uint8") * 255 - # remove duplicated rows - coords_arr_xy = coords_arr[coords_arr[:, 2] == 0] + # Convert to numpy array and ensure integer coordinates + coords_arr = np.array(coords).astype(int) + + # Sort by feature_index first, then by coord_index + coords_arr = coords_arr[np.lexsort((coords_arr[:, 3], coords_arr[:, 2]))] - # remove last column - coords_arr_xy = np.delete(coords_arr_xy, 2, axis=1) + # Get filled pixel coordinates + if args.fill: + filled_coords = np.column_stack(np.where(img == 0)) + all_coords = np.unique(np.vstack((coords_arr[:, :2], filled_coords[:, ::-1])), axis=0) + else: + all_coords = coords_arr[:, :2] - # to pandas and rename columns to x and y - coords_df = pd.DataFrame(coords_arr_xy, columns=['y', 'x']) - - # reorder columns - coords_df = coords_df[['x', 'y']] + # Save all coordinates to CSV + coords_df = pd.DataFrame(all_coords, columns=['x', 'y'], dtype=int) + coords_df.to_csv("{}_{}.txt".format(tma_name, cell_type), sep='\t', index=False) - # drop duplicates - coords_df = coords_df.drop_duplicates( - subset=['x', 'y'], - keep='last').reset_index(drop=True) + # Generate image for visualization if --img is specified + if args.img: + # Group coordinates by feature_index + features = {} + for x, y, feature_index, coord_index in coords_arr: + if feature_index not in features: + features[feature_index] = [] + features[feature_index].append((x, y)) - coords_df.to_csv("{}_{}.txt".format(tma_name, cell_type), sep='\t', index=False) + # Draw each feature separately + for feature_coords in features.values(): + pts = np.array(feature_coords, dtype=np.int32) + if args.fill: + cv2.fillPoly(img, [pts], color=0) # Black fill + else: + cv2.polylines(img, [pts], isClosed=True, color=0, thickness=1) # Black outline - # img save - if args.img: - cv2.imwrite("{}_{}.png".format(tma_name, cell_type), img) + cv2.imwrite("{}_{}.png".format(tma_name, cell_type), img) if __name__ == "__main__": - parser = argparse.ArgumentParser(description="Split ROI coordinates of QuPath TMA annotation by cell type (classfication)") + parser = argparse.ArgumentParser(description="Split ROI coordinates of QuPath TMA annotation by cell type (classification)") parser.add_argument("--qupath_roi", default=False, help="Input QuPath annotation (GeoJSON file)") - parser.add_argument("--fill", action="store_true", required=False, help="Fill pixels in ROIs") - parser.add_argument('--version', action='version', version='%(prog)s 0.1.0') + parser.add_argument("--fill", action="store_true", required=False, help="Fill pixels in ROIs (order of coordinates will be lost)") + parser.add_argument('--version', action='version', version='%(prog)s 0.3.0') parser.add_argument("--all", action="store_true", required=False, help="Extracts all ROIs") parser.add_argument("--img", action="store_true", required=False, help="Generates image of ROIs") args = parser.parse_args()
--- a/qupath_roi_splitter.xml Thu Apr 25 15:13:22 2024 +0000 +++ b/qupath_roi_splitter.xml Fri Jul 19 14:33:40 2024 +0000 @@ -1,7 +1,7 @@ <tool id="qupath_roi_splitter" name="QuPath ROI Splitter" version="@VERSION@+galaxy@VERSION_SUFFIX@"> <description>Split ROI coordinates of QuPath TMA annotation by cell type (classification)</description> <macros> - <token name="@VERSION@">0.2.1</token> + <token name="@VERSION@">0.3.0</token> <token name="@VERSION_SUFFIX@">0</token> </macros> <requirements> @@ -56,15 +56,15 @@ <assert_contents> <has_text text="x"/> <has_text text="y"/> - <has_text text="15561"/> - <has_text text="21160"/> + <has_text text="21153"/> + <has_text text="15570"/> </assert_contents> </element> </output_collection> <output_collection name="output_imgs" type="list" count="4"> <element name="E-5_Tumor.png"> <assert_contents> - <has_size value="1309478"/> + <has_size value="459919"/> </assert_contents> </element> </output_collection>