Mercurial > repos > galaxyp > unipept
diff unipept.py @ 0:6430407e5869 draft
Uploaded
author | galaxyp |
---|---|
date | Fri, 03 Apr 2015 14:55:49 -0400 |
parents | |
children | 0c1ee95282fa |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/unipept.py Fri Apr 03 14:55:49 2015 -0400 @@ -0,0 +1,194 @@ +#!/usr/bin/env python +""" +# +#------------------------------------------------------------------------------ +# University of Minnesota +# Copyright 2015, Regents of the University of Minnesota +#------------------------------------------------------------------------------ +# Author: +# +# James E Johnson +# +#------------------------------------------------------------------------------ +""" + +import json +import logging +import optparse +from optparse import OptionParser +import os +import sys +import re +import urllib +import urllib2 +try: + import xml.etree.cElementTree as ET +except ImportError: + import xml.etree.ElementTree as ET + +def warn_err(msg,exit_code=1): + sys.stderr.write(msg) + if exit_code: + sys.exit(exit_code) + +def read_fasta(fp): + name, seq = None, [] + for line in fp: + line = line.rstrip() + if line.startswith(">"): + if name: yield (name, ''.join(seq)) + name, seq = line, [] + else: + seq.append(line) + if name: yield (name, ''.join(seq)) + +def read_mzid(fp): + peptides = [] + for event, elem in ET.iterparse(fp): + if event == 'end': + if re.search('PeptideSequence',elem.tag): + peptides.append(elem.text) + return peptides + +def read_pepxml(fp): + peptides = [] + for event, elem in ET.iterparse(fp): + if event == 'end': + if re.search('search_hit',elem.tag): + peptides.append(elem.get('peptide')) + return peptides + +def __main__(): + #Parse Command Line + parser = optparse.OptionParser() + # unipept API + parser.add_option( '-A', '--api', dest='unipept', default='pept2lca', choices=['pept2lca','pept2taxa','pept2prot'], help='The unipept application: pept2lca, pept2taxa, or pept2prot' ) + # files + parser.add_option( '-t', '--tabular', dest='tabular', default=None, help='A tabular file that contains a peptide column' ) + parser.add_option( '-c', '--column', dest='column', type='int', default=0, help='The column (zero-based) in the tabular file that contains peptide sequences' ) + parser.add_option( '-f', '--fasta', dest='fasta', default=None, help='A fasta file containing peptide sequences' ) + parser.add_option( '-m', '--mzid', dest='mzid', default=None, help='A mxIdentML file containing peptide sequences' ) + parser.add_option( '-p', '--pepxml', dest='pepxml', default=None, help='A pepxml file containing peptide sequences' ) + # Unipept Flags + parser.add_option( '-e', '--equate_il', dest='equate_il', action='store_true', default=False, help='isoleucine (I) and leucine (L) are equated when matching tryptic peptides to UniProt records' ) + parser.add_option( '-x', '--extra', dest='extra', action='store_true', default=False, help='return the complete lineage of the taxonomic lowest common ancestor' ) + parser.add_option( '-n', '--names', dest='names', action='store_true', default=False, help='return the names of all ranks in the lineage of the taxonomic lowest common ancestor' ) + # Warn vs Error Flag + parser.add_option( '-S', '--strict', dest='strict', action='store_true', default=False, help='Print exit on invalid peptide' ) + # outputs + parser.add_option( '-J', '--json', dest='json', default=None, help='Output file path for json formatted results') + parser.add_option( '-T', '--tsv', dest='tsv', default=None, help='Output file path for TAB-separated-values (.tsv) formatted results') + parser.add_option( '-C', '--csv', dest='csv', default=None, help='Output file path for Comma-separated-values (.csv) formatted results') + parser.add_option( '-M', '--mismatch', dest='mismatch', default=None, help='Output file path for peptide with no matches' ) + (options, args) = parser.parse_args() + invalid_ec = 2 if options.strict else None + peptides = [] + pep_pat = '^([ABCDEFGHIKLMNPQRSTVWXYZ]+)$' + ## Get peptide sequences + if options.mzid: + peptides += read_mzid(options.mzid) + if options.pepxml: + peptides += read_pepxml(options.pepxml) + if options.tabular: + with open(options.tabular) as fp: + for i,line in enumerate(fp): + if line.strip() == '' or line.startswith('#'): + continue + fields = line.rstrip('\n').split('\t') + peptide = fields[options.column] + if not re.match(pep_pat,peptide): + warn_err('"%s" is not a peptide (line %d column %d of tabular file: %s)\n' % (peptide,i,options.column,options.tabular),exit_code=invalid_ec) + peptides.append(peptide) + if options.fasta: + with open(options.fasta) as fp: + for id, peptide in read_fasta(fp): + if not re.match(pep_pat,peptide): + warn_err('"%s" is not a peptide (id %s of fasta file: %s)\n' % (peptide,id,options.fasta),exit_code=invalid_ec) + peptides.append(peptide) + if args and len(args) > 0: + for i,peptide in enumerate(args): + if not re.match(pep_pat,peptide): + warn_err('"%s" is not a peptide (arg %d)\n' % (peptide,i),exit_code=invalid_ec) + peptides.append(peptide) + if len(peptides) < 1: + warn_err("No peptides input!",exit_code=1) + ## unipept + post_data = [] + if options.equate_il: + post_data.append(("equate_il","true")) + if options.names: + post_data.append(("extra","true")) + post_data.append(("names","true")) + elif options.extra: + post_data.append(("extra","true")) + post_data += [('input[]', x) for x in peptides] + headers = {'Content-Type': 'application/x-www-form-urlencoded', 'Accept': 'application/json'} + url = 'http://api.unipept.ugent.be/api/v1/%s' % options.unipept + req = urllib2.Request( url, headers = headers, data = urllib.urlencode(post_data) ) + resp = json.loads( urllib2.urlopen( req ).read() ) + ## output results + if not (options.mismatch or options.json or options.tsv or options.csv): + print >> sys.stdout, str(resp) + if options.mismatch: + peptides_matched = [] + for i,pdict in enumerate(resp): + peptides_matched.append(pdict['peptide']) + with open(options.mismatch,'w') as outputFile: + for peptide in peptides: + if not peptide in peptides_matched: + outputFile.write("%s\n" % peptide) + if options.json: + with open(options.json,'w') as outputFile: + outputFile.write(str(resp)) + if options.tsv or options.csv: + # 'pept2lca','pept2taxa','pept2prot' + pept2lca_column_order = [ 'peptide','superkingdom','kingdom','subkingdom','superphylum','phylum','subphylum','superclass','class_','subclass','infraclass','superorder','order','suborder','infraorder','parvorder','superfamily','family','subfamily','tribe','subtribe','genus','subgenus','species_group','species_subgroup','species','subspecies','varietas','forma' ] + pept2prot_column_order = [ 'peptide','uniprot_id','taxon_id','taxon_name','ec_references','go_references','refseq_ids','refseq_protein_ids','insdc_ids','insdc_protein_ids'] + column_order = pept2prot_column_order if options.unipept == 'pept2prot' else pept2lca_column_order + found_keys = set() + results = [] + for i,pdict in enumerate(resp): + results.append(pdict) + found_keys |= set(pdict.keys()) + # print >> sys.stderr, "%s\n%s" % (pdict.keys(),found_keys) + column_names = [] + column_keys = [] + for col in column_order: + if col in found_keys: + column_names.append(col) + column_keys.append(col) + elif options.extra or options.names: + col_id = col+'_id' + col_name = col+'_name' + if options.extra: + if col_id in found_keys: + column_names.append(col_id) + column_keys.append(col_id) + if options.names: + if col_name in found_keys: + column_names.append(col) + column_keys.append(col_name) + else: + if col+'_name' in found_keys: + column_names.append(col) + column_keys.append(col+'_name') + elif col+'_id' in found_keys: + column_names.append(col) + column_keys.append(col+'_id') + # print >> sys.stderr, "%s\n%s" % (column_names,column_keys) + taxa = [] + for i,pdict in enumerate(results): + vals = [str(pdict[x]) if x in pdict and pdict[x] else '' for x in column_keys] + taxa.append(vals) + if options.tsv: + with open(options.tsv,'w') as outputFile: + outputFile.write("#%s\n"% '\t'.join(column_names)) + for vals in taxa: + outputFile.write("%s\n"% '\t'.join(vals)) + if options.csv: + with open(options.csv,'w') as outputFile: + outputFile.write("%s\n"% ','.join(column_names)) + for vals in taxa: + outputFile.write("%s\n"% ','.join(['"%s"' % (v if v else '') for v in vals])) + +if __name__ == "__main__" : __main__()