Mercurial > repos > george-weingart > lefse
view home/ubuntu/lefse_to_export/plot_res.py @ 2:a31c10fe09c8 draft default tip
Fixed bug due to numerical approximation after normalization affecting root-level clades (e.g. "Bacteria" or "Archaea")
author | george-weingart |
---|---|
date | Tue, 07 Jul 2015 13:52:29 -0400 |
parents | db64b6287cd6 |
children |
line wrap: on
line source
#!/usr/bin/env python import os,sys import matplotlib matplotlib.use('Agg') from pylab import * from lefse import * import argparse colors = ['r','g','b','m','c','y','k','w'] def read_params(args): parser = argparse.ArgumentParser(description='Plot results') parser.add_argument('input_file', metavar='INPUT_FILE', type=str, help="tab delimited input file") parser.add_argument('output_file', metavar='OUTPUT_FILE', type=str, help="the file for the output image") parser.add_argument('--feature_font_size', dest="feature_font_size", type=int, default=7, help="the file for the output image") parser.add_argument('--format', dest="format", choices=["png","svg","pdf"], default='png', type=str, help="the format for the output file") parser.add_argument('--dpi',dest="dpi", type=int, default=72) parser.add_argument('--title',dest="title", type=str, default="") parser.add_argument('--title_font_size',dest="title_font_size", type=str, default="12") parser.add_argument('--class_legend_font_size',dest="class_legend_font_size", type=str, default="10") parser.add_argument('--width',dest="width", type=float, default=7.0 ) parser.add_argument('--height',dest="height", type=float, default=4.0, help="only for vertical histograms") parser.add_argument('--left_space',dest="ls", type=float, default=0.2 ) parser.add_argument('--right_space',dest="rs", type=float, default=0.1 ) parser.add_argument('--orientation',dest="orientation", type=str, choices=["h","v"], default="h" ) parser.add_argument('--autoscale',dest="autoscale", type=int, choices=[0,1], default=1 ) parser.add_argument('--background_color',dest="back_color", type=str, choices=["k","w"], default="w", help="set the color of the background") parser.add_argument('--subclades', dest="n_scl", type=int, default=1, help="number of label levels to be dislayed (starting from the leaves, -1 means all the levels, 1 is default )") parser.add_argument('--max_feature_len', dest="max_feature_len", type=int, default=60, help="Maximum length of feature strings (def 60)") parser.add_argument('--all_feats', dest="all_feats", type=str, default="") args = parser.parse_args() return vars(args) def read_data(input_file,output_file): with open(input_file, 'r') as inp: rows = [line.strip().split()[:-1] for line in inp.readlines() if len(line.strip().split())>3] classes = list(set([v[2] for v in rows if len(v)>2])) if len(classes) < 1: print "No differentially abundant features found in "+input_file os.system("touch "+output_file) sys.exit() data = {} data['rows'] = rows data['cls'] = classes return data def plot_histo_hor(path,params,data,bcl): cls2 = [] if params['all_feats'] != "": cls2 = sorted(params['all_feats'].split(":")) cls = sorted(data['cls']) if bcl: data['rows'].sort(key=lambda ab: fabs(float(ab[3]))*(cls.index(ab[2])*2-1)) else: mmax = max([fabs(float(a)) for a in zip(*data['rows'])[3]]) data['rows'].sort(key=lambda ab: fabs(float(ab[3]))/mmax+(cls.index(ab[2])+1)) pos = arange(len(data['rows'])) head = 0.75 tail = 0.5 ht = head + tail ints = max(len(pos)*0.2,1.5) fig = plt.figure(figsize=(params['width'], ints + ht), edgecolor=params['back_color'],facecolor=params['back_color']) ax = fig.add_subplot(111,frame_on=False,axis_bgcolor=params['back_color']) ls, rs = params['ls'], 1.0-params['rs'] plt.subplots_adjust(left=ls,right=rs,top=1-head*(1.0-ints/(ints+ht)), bottom=tail*(1.0-ints/(ints+ht))) fig.canvas.set_window_title('LDA results') l_align = {'horizontalalignment':'left', 'verticalalignment':'baseline'} r_align = {'horizontalalignment':'right', 'verticalalignment':'baseline'} added = [] m = 1 if data['rows'][0][2] == cls[0] else -1 for i,v in enumerate(data['rows']): indcl = cls.index(v[2]) lab = str(v[2]) if str(v[2]) not in added else "" added.append(str(v[2])) col = colors[indcl%len(colors)] if len(cls2) > 0: col = colors[cls2.index(v[2])%len(colors)] vv = fabs(float(v[3])) * (m*(indcl*2-1)) if bcl else fabs(float(v[3])) ax.barh(pos[i],vv, align='center', color=col, label=lab, height=0.8, edgecolor=params['fore_color']) mv = max([abs(float(v[3])) for v in data['rows']]) for i,r in enumerate(data['rows']): indcl = cls.index(data['rows'][i][2]) if params['n_scl'] < 0: rr = r[0] else: rr = r[0].split(".")[-min(r[0].count("."),params['n_scl'])] if len(rr) > params['max_feature_len']: rr = rr[:params['max_feature_len']/2-2]+" [..]"+rr[-params['max_feature_len']/2+2:] if m*(indcl*2-1) < 0 and bcl: ax.text(mv/40.0,float(i)-0.3,rr, l_align, size=params['feature_font_size'],color=params['fore_color']) else: ax.text(-mv/40.0,float(i)-0.3,rr, r_align, size=params['feature_font_size'],color=params['fore_color']) ax.set_title(params['title'],size=params['title_font_size'],y=1.0+head*(1.0-ints/(ints+ht))*0.8,color=params['fore_color']) ax.set_yticks([]) ax.set_xlabel("LDA SCORE (log 10)") ax.xaxis.grid(True) xlim = ax.get_xlim() if params['autoscale']: ran = arange(0.0001,round(round((abs(xlim[0])+abs(xlim[1]))/10,4)*100,0)/100) if len(ran) > 1 and len(ran) < 100: ax.set_xticks(arange(xlim[0],xlim[1]+0.0001,min(xlim[1]+0.0001,round(round((abs(xlim[0])+abs(xlim[1]))/10,4)*100,0)/100))) ax.set_ylim((pos[0]-1,pos[-1]+1)) leg = ax.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=5, borderaxespad=0., frameon=False,prop={'size':params['class_legend_font_size']}) def get_col_attr(x): return hasattr(x, 'set_color') and not hasattr(x, 'set_facecolor') for o in leg.findobj(get_col_attr): o.set_color(params['fore_color']) for o in ax.findobj(get_col_attr): o.set_color(params['fore_color']) plt.savefig(path,format=params['format'],facecolor=params['back_color'],edgecolor=params['fore_color'],dpi=params['dpi']) plt.close() def plot_histo_ver(path,params,data): cls = data['cls'] mmax = max([fabs(float(a)) for a in zip(*data['rows'])[1]]) data['rows'].sort(key=lambda ab: fabs(float(ab[3]))/mmax+(cls.index(ab[2])+1)) pos = arange(len(data['rows'])) if params['n_scl'] < 0: nam = [d[0] for d in data['rows']] else: nam = [d[0].split(".")[-min(d[0].count("."),params['n_scl'])] for d in data['rows']] fig = plt.figure(edgecolor=params['back_color'],facecolor=params['back_color'],figsize=(params['width'], params['height'])) ax = fig.add_subplot(111,axis_bgcolor=params['back_color']) plt.subplots_adjust(top=0.9, left=params['ls'], right=params['rs'], bottom=0.3) fig.canvas.set_window_title('LDA results') l_align = {'horizontalalignment':'left', 'verticalalignment':'baseline'} r_align = {'horizontalalignment':'right', 'verticalalignment':'baseline'} added = [] for i,v in enumerate(data['rows']): indcl = data['cls'].index(v[2]) lab = str(v[2]) if str(v[2]) not in added else "" added.append(str(v[2])) col = colors[indcl%len(colors)] vv = fabs(float(v[3])) ax.bar(pos[i],vv, align='center', color=col, label=lab) xticks(pos,nam,rotation=-20, ha = 'left',size=params['feature_font_size']) ax.set_title(params['title'],size=params['title_font_size']) ax.set_ylabel("LDA SCORE (log 10)") ax.yaxis.grid(True) a,b = ax.get_xlim() dx = float(len(pos))/float((b-a)) ax.set_xlim((0-dx,max(pos)+dx)) plt.savefig(path,format=params['format'],facecolor=params['back_color'],edgecolor=params['fore_color'],dpi=params['dpi']) plt.close() if __name__ == '__main__': params = read_params(sys.argv) params['fore_color'] = 'w' if params['back_color'] == 'k' else 'k' data = read_data(params['input_file'],params['output_file']) if params['orientation'] == 'v': plot_histo_ver(params['output_file'],params,data) else: plot_histo_hor(params['output_file'],params,data,len(data['cls']) == 2)